These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 36293705)
1. Evaluation of Empirical and Machine Learning Approaches for Estimating Monthly Reference Evapotranspiration with Limited Meteorological Data in the Jialing River Basin, China. Luo J; Dou X; Ma M Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36293705 [TBL] [Abstract][Full Text] [Related]
2. Simulating reference crop evapotranspiration with different climate data inputs using Gaussian exponential model. Jia Y; Wang F; Li P; Huo S; Yang T Environ Sci Pollut Res Int; 2021 Aug; 28(30):41317-41336. PubMed ID: 33783706 [TBL] [Abstract][Full Text] [Related]
3. Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Tikhamarine Y; Malik A; Souag-Gamane D; Kisi O Environ Sci Pollut Res Int; 2020 Aug; 27(24):30001-30019. PubMed ID: 32445152 [TBL] [Abstract][Full Text] [Related]
4. Modeling monthly reference evapotranspiration process in Turkey: application of machine learning methods. Bayram S; Çıtakoğlu H Environ Monit Assess; 2022 Nov; 195(1):67. PubMed ID: 36329360 [TBL] [Abstract][Full Text] [Related]
5. [Spatio-temporal variation of reference crop evapotranspiration and its climatic mechanism in Nenjiang River Basin, China]. Zhu GL; Tong SZ; Zhao CZ Ying Yong Sheng Tai Xue Bao; 2022 Jan; 33(1):201-209. PubMed ID: 35224942 [TBL] [Abstract][Full Text] [Related]
6. Monthly evapotranspiration estimation using optimal climatic parameters: efficacy of hybrid support vector regression integrated with whale optimization algorithm. Tikhamarine Y; Malik A; Pandey K; Sammen SS; Souag-Gamane D; Heddam S; Kisi O Environ Monit Assess; 2020 Oct; 192(11):696. PubMed ID: 33040211 [TBL] [Abstract][Full Text] [Related]
7. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Deo RC; Şahin M Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409 [TBL] [Abstract][Full Text] [Related]
8. An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration. Ehteram M; Singh VP; Ferdowsi A; Mousavi SF; Farzin S; Karami H; Mohd NS; Afan HA; Lai SH; Kisi O; Malek MA; Ahmed AN; El-Shafie A PLoS One; 2019; 14(5):e0217499. PubMed ID: 31150443 [TBL] [Abstract][Full Text] [Related]
9. Parameter regionalization based on machine learning optimizes the estimation of reference evapotranspiration in data deficient area. Shu Z; Zhou Y; Zhang J; Jin J; Wang L; Cui N; Wang G; Zhang J; Wu H; Wu Z; Chen X Sci Total Environ; 2022 Oct; 844():157034. PubMed ID: 35772544 [TBL] [Abstract][Full Text] [Related]
10. Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators. Sun X; Zhang B; Dai M; Gao R; Jing C; Ma K; Gu S; Gu L; Zhen W; Gu X Front Plant Sci; 2024; 15():1354913. PubMed ID: 39040513 [TBL] [Abstract][Full Text] [Related]
11. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Heddam S; Kisi O Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629 [TBL] [Abstract][Full Text] [Related]
12. Modelling the reference crop evapotranspiration in the Beas-Sutlej basin (India): an artificial neural network approach based on different combinations of meteorological data. Elbeltagi A; Kumar N; Chandel A; Arshad A; Pande CB; Islam ARMT Environ Monit Assess; 2022 Feb; 194(3):141. PubMed ID: 35118563 [TBL] [Abstract][Full Text] [Related]
13. [Spatiotemporal characteristics of reference crop evapotranspiration in inland river basins of Hexi region]. Lü XD; Wang HL; Ma ZM Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3161-7. PubMed ID: 21443004 [TBL] [Abstract][Full Text] [Related]
14. Evolving connectionist systems (ECoSs): a new approach for modeling daily reference evapotranspiration (ET Heddam S; Watts MJ; Houichi L; Djemili L; Sebbar A Environ Monit Assess; 2018 Aug; 190(9):516. PubMed ID: 30109518 [TBL] [Abstract][Full Text] [Related]
15. Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques. Shah MI; Javed MF; Abunama T Environ Sci Pollut Res Int; 2021 Mar; 28(11):13202-13220. PubMed ID: 33179185 [TBL] [Abstract][Full Text] [Related]
16. Reference evapotranspiration estimate with missing climatic data and multiple linear regression models. Koç DL; Erkan Can M PeerJ; 2023; 11():e15252. PubMed ID: 37131990 [TBL] [Abstract][Full Text] [Related]
17. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle. Deo RC; Downs N; Parisi AV; Adamowski JF; Quilty JM Environ Res; 2017 May; 155():141-166. PubMed ID: 28222363 [TBL] [Abstract][Full Text] [Related]
18. Spatiotemporal pattern of reference crop evapotranspiration and its response to meteorological factors in Northwest China over years 2000-2019. Zhang J; Deng M; Yang T; Pang M; Wang Z Environ Sci Pollut Res Int; 2022 Oct; 29(46):69831-69848. PubMed ID: 35576028 [TBL] [Abstract][Full Text] [Related]
19. Estimation of reference evapotranspiration using some class-A pan evaporimeter pan coefficient estimation models in Mediterranean-Southeastern Anatolian transitional zone conditions of Turkey. Usta S PeerJ; 2024; 12():e17685. PubMed ID: 39011382 [TBL] [Abstract][Full Text] [Related]
20. Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. Wu L; Fan J PLoS One; 2019; 14(5):e0217520. PubMed ID: 31150448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]