These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36293783)
1. Neurological Outpatients Prefer EEG Home-Monitoring over Inpatient Monitoring-An Analysis Based on the UTAUT Model. Baum U; Kühn F; Lichters M; Baum AK; Deike R; Hinrichs H; Neumann T Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36293783 [TBL] [Abstract][Full Text] [Related]
2. Patients' intention to use online postings of ED wait times: A modified UTAUT model. Jewer J Int J Med Inform; 2018 Apr; 112():34-39. PubMed ID: 29500019 [TBL] [Abstract][Full Text] [Related]
3. The Acceptance Behavior of Smart Home Health Care Services in South Korea: An Integrated Model of UTAUT and TTF. Kang HJ; Han J; Kwon GH Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36293859 [TBL] [Abstract][Full Text] [Related]
4. Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model. Chao CM Front Psychol; 2019; 10():1652. PubMed ID: 31379679 [TBL] [Abstract][Full Text] [Related]
5. The Mediating Influence of the Unified Theory of Acceptance and Use of Technology on the Relationship Between Internal Health Locus of Control and Mobile Health Adoption: Cross-sectional Study. Ahadzadeh AS; Wu SL; Ong FS; Deng R J Med Internet Res; 2021 Dec; 23(12):e28086. PubMed ID: 34964718 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Driving Factors in the Intention to Use the Virtual Nursing Home for the Elderly: A Modified UTAUT Model in the Chinese Context. Ren Z; Zhou G Healthcare (Basel); 2023 Aug; 11(16):. PubMed ID: 37628526 [TBL] [Abstract][Full Text] [Related]
7. Factors Influencing Patients' Intentions to Use Diabetes Management Apps Based on an Extended Unified Theory of Acceptance and Use of Technology Model: Web-Based Survey. Zhang Y; Liu C; Luo S; Xie Y; Liu F; Li X; Zhou Z J Med Internet Res; 2019 Aug; 21(8):e15023. PubMed ID: 31411146 [TBL] [Abstract][Full Text] [Related]
8. Factors influencing the elderly's behavioural intention to use smart home technologies in Saudi Arabia. Maswadi K; Ghani NA; Hamid S PLoS One; 2022; 17(8):e0272525. PubMed ID: 36040877 [TBL] [Abstract][Full Text] [Related]
9. What factors determine therapists' acceptance of new technologies for rehabilitation – a study using the Unified Theory of Acceptance and Use of Technology (UTAUT). Liu L; Miguel Cruz A; Rios Rincon A; Buttar V; Ranson Q; Goertzen D Disabil Rehabil; 2015; 37(5):447-55. PubMed ID: 24901351 [TBL] [Abstract][Full Text] [Related]
10. Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. Hoque R; Sorwar G Int J Med Inform; 2017 May; 101():75-84. PubMed ID: 28347450 [TBL] [Abstract][Full Text] [Related]
11. Examining the acceptance of an integrated Electronic Health Records system: Insights from a repeated cross-sectional design. Luyten J; Marneffe W Int J Med Inform; 2021 Jun; 150():104450. PubMed ID: 33848941 [TBL] [Abstract][Full Text] [Related]
12. Diagnostic and therapeutic yield of a patient-controlled portable EEG device with dry electrodes for home-monitoring neurological outpatients-rationale and protocol of the HOME Neumann T; Baum AK; Baum U; Deike R; Feistner H; Hinrichs H; Stokes J; Robra BP Pilot Feasibility Stud; 2018; 4():100. PubMed ID: 29796295 [TBL] [Abstract][Full Text] [Related]
13. Mobile learning acceptance in social distancing during the COVID-19 outbreak: The mediation effect of hedonic motivation. Sitar-Tăut DA Hum Behav Emerg Technol; 2021 Jul; 3(3):366-378. PubMed ID: 34222833 [TBL] [Abstract][Full Text] [Related]
14. Assessing patients' attitudes towards telepsychotherapy: The development of the unified theory of acceptance and use of technology-patient version. Békés V; Doorn KA; Bőthe B Clin Psychol Psychother; 2022 Nov; 29(6):1918-1927. PubMed ID: 35705786 [TBL] [Abstract][Full Text] [Related]
15. Predicting Acceptance of e-Mental Health Interventions in Patients With Obesity by Using an Extended Unified Theory of Acceptance Model: Cross-sectional Study. Rentrop V; Damerau M; Schweda A; Steinbach J; Schüren LC; Niedergethmann M; Skoda EM; Teufel M; Bäuerle A JMIR Form Res; 2022 Mar; 6(3):e31229. PubMed ID: 35297769 [TBL] [Abstract][Full Text] [Related]
16. Analysis of the factors influencing healthcare professionals' adoption of mobile electronic medical record (EMR) using the unified theory of acceptance and use of technology (UTAUT) in a tertiary hospital. Kim S; Lee KH; Hwang H; Yoo S BMC Med Inform Decis Mak; 2016 Jan; 16():12. PubMed ID: 26831123 [TBL] [Abstract][Full Text] [Related]
17. [Outpatient long-term video EEG as new diagnostic approach in Germany: results of a feasibility study]. Meisel C; Holtkamp M; Vock S Nervenarzt; 2023 Jun; 94(6):519-524. PubMed ID: 36414686 [TBL] [Abstract][Full Text] [Related]
18. ARAM: A Technology Acceptance Model to Ascertain the Behavioural Intention to Use Augmented Reality. Marto A; Gonçalves A; Melo M; Bessa M; Silva R J Imaging; 2023 Mar; 9(3):. PubMed ID: 36976124 [TBL] [Abstract][Full Text] [Related]
19. Feasibility assessment of patient-controlled EEG home-monitoring: More results from the HOME Baum U; Baum AK; Deike R; Feistner H; Markgraf B; Hinrichs H; Robra BP; Neumann T Clin Neurophysiol; 2022 Aug; 140():12-20. PubMed ID: 35653930 [TBL] [Abstract][Full Text] [Related]
20. Acceptance towards digital health interventions - Model validation and further development of the Unified Theory of Acceptance and Use of Technology. Philippi P; Baumeister H; Apolinário-Hagen J; Ebert DD; Hennemann S; Kott L; Lin J; Messner EM; Terhorst Y Internet Interv; 2021 Dec; 26():100459. PubMed ID: 34603973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]