These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36293959)
1. Heterotrophic Bioleaching of Vanadium from Low-Grade Stone Coal by Aerobic Microbial Consortium. Zhang H; Shi J; Chen C; Yang M; Lu J; Zhang B Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36293959 [TBL] [Abstract][Full Text] [Related]
2. Enhanced effect of biochar on leaching vanadium and copper from stone coal tailings by Thiobacillus ferrooxidans. Dong Y; Chong S; Lin H Environ Sci Pollut Res Int; 2022 Mar; 29(14):20398-20408. PubMed ID: 34738215 [TBL] [Abstract][Full Text] [Related]
3. Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia. Joulian C; Fonti V; Chapron S; Bryan CG; Guezennec AG Res Microbiol; 2020; 171(7):260-270. PubMed ID: 32890633 [TBL] [Abstract][Full Text] [Related]
4. Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms. Li J; Zhang B; Yang M; Lin H J Hazard Mater; 2021 Aug; 416():125843. PubMed ID: 33865106 [TBL] [Abstract][Full Text] [Related]
5. Bioleaching performance of vanadium-bearing smelting ash by Acidithiobacillus ferrooxidans for vanadium recovery. Guo X; Chen S; Han Y; Hao C; Feng X; Zhang B J Environ Manage; 2023 Jun; 336():117615. PubMed ID: 36893541 [TBL] [Abstract][Full Text] [Related]
6. New Insights into the Penetration Depth of Sulfuric Acid and Leaching Effect in the Sulfuric Acid Curing-Leaching Process of Vanadium-Bearing Stone Coal. Li H; Han Y; Jin J; Zhou Z ACS Omega; 2021 Jul; 6(27):17599-17608. PubMed ID: 34278145 [TBL] [Abstract][Full Text] [Related]
7. The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system. Niu J; Deng J; Xiao Y; He Z; Zhang X; Van Nostrand JD; Liang Y; Deng Y; Liu X; Yin H Sci Rep; 2016 Oct; 6():34744. PubMed ID: 27698381 [TBL] [Abstract][Full Text] [Related]
8. Comparison of three different bioleaching systems for Li recovery from lepidolite. Sedlakova-Kadukova J; Marcincakova R; Luptakova A; Vojtko M; Fujda M; Pristas P Sci Rep; 2020 Sep; 10(1):14594. PubMed ID: 32884068 [TBL] [Abstract][Full Text] [Related]
9. Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses. Patel BC; Tipre DR; Dave SR Bioresour Technol; 2012 Aug; 118():483-9. PubMed ID: 22717567 [TBL] [Abstract][Full Text] [Related]
10. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification. Zhang RC; Xu XJ; Chen C; Xing DF; Shao B; Liu WZ; Wang AJ; Lee DJ; Ren NQ Water Res; 2018 Oct; 143():355-366. PubMed ID: 29986245 [TBL] [Abstract][Full Text] [Related]
11. Towards Bioleaching of a Vanadium Containing Magnetite for Metal Recovery. Bellenberg S; Turner S; Seidel L; van Wyk N; Zhang R; Sachpazidou V; Embile RF; Walder I; Leiviskä T; Dopson M Front Microbiol; 2021; 12():693615. PubMed ID: 34276626 [TBL] [Abstract][Full Text] [Related]
12. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process. Han Y; Ma X; Zhao W; Chang Y; Zhang X; Wang X; Wang J; Huang Z J Biosci Bioeng; 2013 Oct; 116(4):465-71. PubMed ID: 23673133 [TBL] [Abstract][Full Text] [Related]
13. Vanadium removal from LD converter slag using bacteria and fungi. Mirazimi SM; Abbasalipour Z; Rashchi F J Environ Manage; 2015 Apr; 153():144-51. PubMed ID: 25697901 [TBL] [Abstract][Full Text] [Related]
14. Bioleaching of Heavy Metals from Printed Circuit Boards with an Acidophilic Iron-Oxidizing Microbial Consortium in Stirred Tank Reactors. Tapia J; Dueñas A; Cheje N; Soclle G; Patiño N; Ancalla W; Tenorio S; Denos J; Taco H; Cao W; Alexandrino DAM; Jia Z; Vasconcelos V; Carvalho MF; Lazarte A Bioengineering (Basel); 2022 Feb; 9(2):. PubMed ID: 35200431 [TBL] [Abstract][Full Text] [Related]
15. Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium. Vardanyan N; Sevoyan G; Navasardyan T; Vardanyan A Environ Technol; 2019 Nov; 40(26):3467-3472. PubMed ID: 29781399 [TBL] [Abstract][Full Text] [Related]
16. The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system. Xiao Y; Xu Y; Dong W; Liang Y; Fan F; Zhang X; Zhang X; Niu J; Ma L; She S; He Z; Liu X; Yin H Appl Microbiol Biotechnol; 2015 Dec; 99(23):10311-22. PubMed ID: 26266752 [TBL] [Abstract][Full Text] [Related]
17. Enrichment and Chemical Speciation of Vanadium and Cobalt in Stone Coal Combustion Products in Ankang, Shanxi Province, China. Cui W; Meng Q; Li W; Feng Q Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35954514 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetically divergent bacteria consortium from neutral activated sludge showed heightened potential on bioleaching spent lithium-ion batteries. Cai X; Tian L; Chen C; Huang W; Yu Y; Liu C; Yang B; Lu X; Mao Y Ecotoxicol Environ Saf; 2021 Oct; 223():112592. PubMed ID: 34364128 [TBL] [Abstract][Full Text] [Related]
19. Sulfur-based Mixotrophic Vanadium (V) Bio-reduction towards Lower Organic Requirement and Sulfate Accumulation. Wang Z; Zhang B; He C; Shi J; Wu M; Guo J Water Res; 2021 Feb; 189():116655. PubMed ID: 33242787 [TBL] [Abstract][Full Text] [Related]