These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36295229)

  • 41. Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array.
    Tharwat MM; Almalki A; Mahros AM
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809134
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental Investigation of the Dielectric Constants of Thin Noble Metallic Films Using a Surface Plasmon Resonance Sensor.
    Tao L; Deng S; Gao H; Lv H; Wen X; Li M
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182920
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.
    Jiang ZH; Yun S; Toor F; Werner DH; Mayer TS
    ACS Nano; 2011 Jun; 5(6):4641-7. PubMed ID: 21456579
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Broadband Near-Infrared Absorber Based on All Metallic Metasurface.
    Zhang K; Deng R; Song L; Zhang T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671708
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture.
    Ghobadi A; Dereshgi SA; Hajian H; Bozok B; Butun B; Ozbay E
    Sci Rep; 2017 Jul; 7(1):4755. PubMed ID: 28684879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.
    Nguyen DM; Lee D; Rho J
    Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide.
    Wu G; Jiao X; Wang Y; Zhao Z; Wang Y; Liu J
    Opt Express; 2021 Jan; 29(2):2703-2711. PubMed ID: 33726461
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultra-broadband metamaterial absorbers from long to very long infrared regime.
    Zhou Y; Qin Z; Liang Z; Meng D; Xu H; Smith DR; Liu Y
    Light Sci Appl; 2021 Jul; 10(1):138. PubMed ID: 34226489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Angular- and Polarization-insensitive Ultrathin Double-layered Metamaterial Absorber for Ultra-wideband Application.
    Cong LL; Cao XY; Song T; Gao J; Lan JX
    Sci Rep; 2018 Jun; 8(1):9627. PubMed ID: 29941959
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of an ultra-broadband near-perfect bilayer grating metamaterial absorber based on genetic algorithm.
    Cai H; Sun Y; Wang X; Zhan S
    Opt Express; 2020 May; 28(10):15347-15359. PubMed ID: 32403564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial.
    Liu Z; Liu G; Fu G; Liu X; Wang Y
    Opt Express; 2016 Mar; 24(5):5020-5025. PubMed ID: 29092330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime.
    Bilal RMH; Saeed MA; Choudhury PK; Baqir MA; Kamal W; Ali MM; Rahim AA
    Sci Rep; 2020 Aug; 10(1):14035. PubMed ID: 32820192
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers.
    Zhang N; Zhou P; Cheng D; Weng X; Xie J; Deng L
    Opt Lett; 2013 Apr; 38(7):1125-7. PubMed ID: 23546265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Triangular metallic ring-shaped broadband polarization-insensitive and wide-angle metamaterial absorber for visible regime.
    Bilal RMH; Baqir MA; Hameed M; Naqvi SA; Ali MM
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jan; 39(1):136-142. PubMed ID: 35200983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of ultra-broadband absorption enhancement in plasmonic absorber by interaction resonance of multi-plasmon modes and Fabry-Perot mode.
    Zeng L; Zhang X; Ye H; Dong H; Zhang H
    Opt Express; 2021 Aug; 29(18):29228-29241. PubMed ID: 34615037
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion.
    Qi B; Chen W; Niu T; Mei Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443702
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metamaterial perfect absorber with unabated size-independent absorption.
    Yu P; Besteiro LV; Wu J; Huang Y; Wang Y; Govorov AO; Wang Z
    Opt Express; 2018 Aug; 26(16):20471-20480. PubMed ID: 30119357
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ultra-wideband terahertz metamaterial absorber based on Snowflake Koch Fractal dielectric loaded graphene.
    Nourbakhsh M; Zareian-Jahromi E; Basiri R
    Opt Express; 2019 Nov; 27(23):32958-32969. PubMed ID: 31878371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.