These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36295232)

  • 1. A Layer-Wise Surface Deformation Defect Detection by Convolutional Neural Networks in Laser Powder-Bed Fusion Images.
    Ansari MA; Crampton A; Parkinson S
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on an Online Monitoring Device for the Powder Laying Process of Laser Powder Bed Fusion.
    Wei B; Liu J; Li J; Zhao Z; Liu Y; Yang G; Liu L; Chang H
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roughness and Near-Surface Porosity of Unsupported Overhangs Produced by High-Speed Laser Powder Bed Fusion.
    Shange M; Yadroitsava I; du Plessis A; Yadroitsev I
    3D Print Addit Manuf; 2022 Aug; 9(4):288-300. PubMed ID: 36660231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning-Driven Prediction of Mechanical Properties of 316L Stainless Steel Metallographic by Laser Powder Bed Fusion.
    Zhang Z; Mativenga P; Zhang W; Huang SQ
    Micromachines (Basel); 2024 Sep; 15(9):. PubMed ID: 39337827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion.
    Hojjatzadeh SMH; Guo Q; Parab ND; Qu M; Escano LI; Fezzaa K; Everhart W; Sun T; Chen L
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Applied to Defect Detection in Powder Spreading Process of Magnetic Material Additive Manufacturing.
    Chen HY; Lin CC; Horng MH; Chang LK; Hsu JH; Chang TW; Hung JC; Lee RM; Tsai MC
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Electrical Resistance Diagnostic for Conductivity Monitoring in Laser Powder Bed Fusion.
    Mukherjee S; Benavidez E; Crumb M; Calta NP
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additive manufacturing of Al
    Ur Rehman A; Ullah A; Liu T; Ur Rehman R; Salamci MU
    Front Chem; 2023; 11():1034473. PubMed ID: 36817171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Superhydrophobicity through Surface Defects from Laser Powder Bed Fusion Additive Manufacturing.
    Kan L; Zhang L; Wang P; Liu Q; Wang J; Su B; Song B; Shi Y
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Pore Detection and Morphological Features Extraction in Laser Powder Bed Fusion with Image Processing.
    Li J; Zhang X; Ma F; Wang S; Huang Y
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of Single-Track Melting States Based on Photodiode Signal during Laser Powder Bed Fusion.
    Cao L; Hu W; Zhou T; Yu L; Huang X
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion.
    Cheng B; Lane B; Whiting J; Chou K
    J Manuf Sci Eng; 2018; 140():. PubMed ID: 30996585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameter Optimization for Printing Ti6Al4V-Alloy Patient-Customized Orthopaedic Implants by Laser Powder Bed Fusion Using Physio-mechanical Properties and Biological Evaluations.
    Gaur B; Ghyar R; Bhallamudi R
    Indian J Orthop; 2022 May; 56(5):797-804. PubMed ID: 35547343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powder Bed Thermal Diffusivity Using Laser Flash Three Layer Analysis.
    Habiba U; Hebert RJ
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser Powder Bed Fusion of Chromium Bronze Using Recycled Powder.
    Pelevin IA; Burmistrov MA; Ozherelkov DY; Shinkaryov AS; Chernyshikhin SV; Gromov AA; Nalivaiko AY
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34208840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation and development of a deep learning framework to predict process-induced surface roughness in additively manufactured aluminum alloys.
    Muhammad W; Kang J; Ibragimova O; Inal K
    Weld World; 2023; 67(4):897-921. PubMed ID: 37070123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size.
    Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications.
    Lietaert K; Zadpoor AA; Sonnaert M; Schrooten J; Weber L; Mortensen A; Vleugels J
    Acta Biomater; 2020 Jul; 110():289-302. PubMed ID: 32348917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning with mixup augmentation for improved pore detection during additive manufacturing.
    Ahmmed B; Rau EG; Mudunuru MK; Karra S; Tempelman JR; Wachtor AJ; Forien JB; Guss GM; Calta NP; DePond PJ; Matthews MJ
    Sci Rep; 2024 Jun; 14(1):13365. PubMed ID: 38862686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.