These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36295243)

  • 1. A Simulation Study on the Effect of Residual Stress on the Multi-Layer Selective Laser Melting Processes Considering Solid-State Phase Transformation.
    Li X; Zhang M; Qi J; Yang Z; Jiao Z
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat Source Modeling in Selective Laser Melting.
    Mirkoohi E; Seivers DE; Garmestani H; Liang SY
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting.
    Ao X; Liu J; Xia H; Yang Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Simulation Study of Multi-Field Coupling for Laser Cladding of Shaft Parts.
    Zhao C; Ma C; Yang J; Li M; Zhao Q; Ma H; Jia X
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V.
    Ali H; Ghadbeigi H; Mumtaz K
    J Mater Eng Perform; 2018; 27(8):4059-4068. PubMed ID: 30956520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of Stress Field during the Selective Laser Melting Process of the Nickel-Based Superalloy, GH4169.
    Zhao Z; Li L; Tan L; Bai P; Li J; Wu L; Liao H; Cheng Y
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30149554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Analysis of Laser Additive Manufacturing of High Layer Thickness Pure Ti and Inconel 718 Alloy Materials Using Finite Element Method.
    Singh SN; Chowdhury S; Nirsanametla Y; Deepati AK; Prakash C; Singh S; Wu LY; Zheng HY; Pruncu C
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of the Evolution of Thermal Dynamics during Selective Laser Melting and Experimental Verification Using Online Monitoring.
    Bian P; Shao X; Du J; Ye F; Zhang X; Mu Y
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Thermo-Mechanical Coupling Effect in Selective Laser Melting of Aluminum Alloy Powder.
    Duan X; Chen X; Zhu K; Long T; Huang S; Jerry FYH
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches.
    Ansari MJ; Nguyen DS; Park HS
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Thermal Stress on the Formation and Cracking Behavior of Nickel-Based Superalloys by Selective Laser Melting Based on a Coupled Thermo-Mechanical Model.
    Nie S; Li L; Wang Q; Zhao R; Lin X; Liu F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation and validation of residual deformations in additive manufacturing of metal parts.
    Mayer T; Brändle G; Schönenberger A; Eberlein R
    Heliyon; 2020 May; 6(5):e03987. PubMed ID: 32478189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo-Fluid-Dynamic Modeling of the Melt Pool during Selective Laser Melting for AZ91D Magnesium Alloy.
    Shen H; Yan J; Niu X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling Analysis on Microstructure and Residual Stress in Selective Laser Melting (SLM) with Varying Key Process Parameters.
    Bian P; Wang C; Xu K; Ye F; Zhang Y; Li L
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy.
    Wang JH; Ren J; Liu W; Wu XY; Gao MX; Bai PK
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Numerical Simulation of the SLM Molten Pool Dynamic Behavior of a Nickel-Based Superalloy on the Workpiece Scale.
    Cao L; Yuan X
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical Simulation and Experimental Study on Residual Stress in the Curved Surface Forming of 12CrNi2 Alloy Steel by Laser Melting Deposition.
    Cui Z; Hu X; Dong S; Yan S; Zhao X
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32998235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting.
    Dezfoli ARA; Lo YL; Raza MM
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of Residual Stresses in Laser Additive Manufactured AlSi10Mg Specimens Using an Ultrasonic Peening Technique.
    Xing X; Duan X; Sun X; Gong H; Wang L; Jiang F
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Overview of Additive Manufacturing Technologies-A Review to Technical Synthesis in Numerical Study of Selective Laser Melting.
    Razavykia A; Brusa E; Delprete C; Yavari R
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.