BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36295258)

  • 1. Fe-Al-Si-Type Iron Aluminides: On the Strengthening by Refractory Metals Borides.
    Vodičková V; Švec M; Hanus P; Bukovská Š; Pazourková Prokopčáková P
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Higher Silicon Content and Heat Treatment on Structure Evolution and High-Temperature Behaviour of Fe-28Al-15Si-2Mo Alloy.
    Švec M; Vodičková V; Hanus P; Pazourková Prokopčáková P; Čamek L; Moravec J
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34199604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Simultaneous Si and Ti/Mo Alloying on High-Temperature Strength of Fe
    Vodičková V; Švec M; Hanus P; Novák P; Záděra A; Keller V; Prokopčáková PP
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32957742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation Behavior of Fe-Al, Fe-Si and Fe-Al-Si Intermetallics.
    Novák P; Nová K
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic effects of alloying elements on β solidifying titanium aluminides: A review.
    Raji SA; Popoola API; Pityana SL; Popoola OM
    Heliyon; 2020 Jul; 6(7):e04463. PubMed ID: 32728641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, Mechanical Properties, and High-Temperature Wear Resistance of Ti-Al-B alloy.
    Cui G; Liu Y; Gao G; Liu H; Li S; Kou Z
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31739472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering.
    Novák P; Barták Z; Nová K; Průša F
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Formation of TiB
    Skałoń M; Hebda M; Schrode B; Resel R; Kazior J; Sommitsch C
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O.
    Stráský J; Harcuba P; Václavová K; Horváth K; Landa M; Srba O; Janeček M
    J Mech Behav Biomed Mater; 2017 Jul; 71():329-336. PubMed ID: 28399493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of Mo-Si alloy microstructure by small additions of Zr.
    Mousa M; Wanderka N; Timpel M; Singh S; Krüger M; Heilmaier M; Banhart J
    Ultramicroscopy; 2011 May; 111(6):706-10. PubMed ID: 21215523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods.
    Knaislová A; Novák P; Kopeček J; Průša F
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31546647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on the Analysis of Thermal and Thermodynamic Aspects of Grain Refinement of Aluminum-Silicon-Based Alloys.
    Samuel E; Samuel AM; Songmene V; Samuel FH
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation.
    Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying.
    Novák P; Vanka T; Nová K; Stoulil J; Průša F; Kopeček J; Haušild P; Laufek F
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.
    Fu J; Kim HY; Miyazaki S
    J Mech Behav Biomed Mater; 2017 Jan; 65():716-723. PubMed ID: 27750162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Silicide and Silicide-Aluminide Coatings on Molybdenum Alloy during Slurry Cementation Process: Influence of Slurry Volume.
    Kochmańska AE; Jarlaczyńska A; Baranowska J
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel High-Entropy Aluminide-Silicide Alloy.
    Novák P; Nová K
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34201945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Si addition on the microstructure and mechanical properties of Ti-35Nb alloy for applications in orthopedic implants.
    Tavares AM; Ramos WS; de Blas JC; Lopes ES; Caram R; Batista WW; Souza SA
    J Mech Behav Biomed Mater; 2015 Nov; 51():74-87. PubMed ID: 26218870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Fe addition on properties of Ti-6Al-xFe manufactured by blended elemental process.
    Sjafrizal T; Dehghan-Manshadi A; Kent D; Yan M; Dargusch MS
    J Mech Behav Biomed Mater; 2020 Feb; 102():103518. PubMed ID: 31877522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.