These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36295263)

  • 1. Correlation between Differential Fast Scanning Calorimetry and Additive Manufacturing Results of Aluminium Alloys.
    Kessler O; Zhuravlev E; Wenner S; Heiland S; Schaper M
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirements for Processing High-Strength AlZnMgCu Alloys with PBF-LB/M to Achieve Crack-Free and Dense Parts.
    Heiland S; Milkereit B; Hoyer KP; Zhuravlev E; Kessler O; Schaper M
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Situ Alloy Formation of a WMoTaNbV Refractory Metal High Entropy Alloy by Laser Powder Bed Fusion (PBF-LB/M).
    Huber F; Bartels D; Schmidt M
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grain Structure Evolution of Al-Cu Alloys in Powder Bed Fusion with Laser Beam for Excellent Mechanical Properties.
    Rasch M; Heberle J; Dechet MA; Bartels D; Gotterbarm MR; Klein L; Gorunov A; Schmidt J; Körner C; Peukert W; Schmidt M
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ongoing Challenges of Laser-Based Powder Bed Fusion Processing of Al Alloys and Potential Solutions from the Literature-A Review.
    Martucci A; Aversa A; Lombardi M
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancements in Additive Manufacturing of Tantalum via the Laser Powder Bed Fusion (PBF-LB/M): A Comprehensive Review.
    Mohsan AUH; Wei D
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of an Increased Particle Size Distribution of Ti-6Al-4V Powders Used for Laser-Based Powder Bed Fusion of Metals.
    Ludwig I; Kluge M
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification of the Laser Powder Bed Fusion Performance of 2024 Aluminum Alloys Modified Using Nano-LaB
    Yao Z; Xie Z
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation Behavior of a Single Al-20Si Particle Rapidly Solidified in a Fast Scanning Calorimeter.
    Peng Q; Yang B; Milkereit B; Liu D; Springer A; Rettenmayr M; Schick C; Keßler O
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Rapid Heating and Cooling Conditions on Microstructure Formation in Powder Bed Fusion of Al-Si Hypoeutectic Alloy: A Phase-Field Study.
    Okugawa M; Furushiro Y; Koizumi Y
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Use of Metal Sinter Powder in Laser Powder Bed Fusion Processing (PBF-LB/M).
    Bernsmann JL; Hillebrandt S; Rommerskirchen M; Bold S; Schleifenbaum JH
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of high-strength aluminium alloys.
    Martin JH; Yahata BD; Hundley JM; Mayer JA; Schaedler TA; Pollock TM
    Nature; 2017 Sep; 549(7672):365-369. PubMed ID: 28933439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical Approach to Eliminate Solidification Cracks by Supplementing AlMg4.5Mn0.7 with AlSi10Mg Powder in Laser Powder Bed Fusion.
    Böhm C; Werz M; Weihe S
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the Allowed Compositional Range of Additively Manufactured 316L Stainless Steel on Processability and Material Properties.
    Großwendt F; Becker L; Röttger A; Chehreh AB; Strauch AL; Uhlenwinkel V; Lentz J; Walther F; Fechte-Heinen R; Weber S; Theisen W
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Role of ZrN Particles in the Microstructural Development in a Beta Titanium Alloy Processed by Laser Powder Bed Fusion.
    Chen X; Qiu C
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural Origins of the Corrosion Resistance of a Mg-Y-Nd-Zr Alloy Processed by Powder Bed Fusion - Laser Beam.
    Nilsson Åhman H; D'Elia F; Mellin P; Persson C
    Front Bioeng Biotechnol; 2022; 10():917812. PubMed ID: 35845389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Solidification of Invar Alloy.
    He H; Yao Z; Li X; Xu J
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processability of a Hot Work Tool Steel Powder Mixture in Laser-Based Powder Bed Fusion.
    Hantke N; Großwendt F; Strauch A; Fechte-Heinen R; Röttger A; Theisen W; Weber S; Sehrt JT
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Enhanced Understanding of the Powder Bed Fusion-Laser Beam Processing of Mg-Y
    Nilsson Åhman H; Thorsson L; Mellin P; Lindwall G; Persson C
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Modeling of the Solidification Structure Evolution and of the Inter Layer/Track Voids Formation in Metallic Alloys Processed by Powder Bed Fusion Additive Manufacturing.
    Nastac L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.