These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36295308)

  • 1. Modelling and Simulation Strategies for Fluid-Structure-Interactions of Highly Viscous Thermoplastic Melt and Single Fibres-A Numerical Study.
    Gröger B; Wang J; Bätzel T; Hornig A; Gude M
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation.
    Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P
    PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction.
    Kolahdouz EM; Wells DR; Rossi S; Aycock KI; Craven BA; Griffith BE
    J Comput Phys; 2023 Sep; 488():. PubMed ID: 37214277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of a fixed-grid and arbitrary Lagrangian-Eulerian methods on modelling fluid-structure interaction of the aortic valve.
    Joda A; Jin Z; Summers J; Korossis S
    Proc Inst Mech Eng H; 2019 May; 233(5):544-553. PubMed ID: 30922162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction.
    Kolahdouz EM; Bhalla APS; Scotten LN; Craven BA; Griffith BE
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34149063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of DVT diseases using numerical simulations.
    Simão M; Ferreira JM; Mora-Rodriguez J; Ramos HM
    Med Biol Eng Comput; 2016 Oct; 54(10):1591-609. PubMed ID: 26780462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational modeling of the fluid flow and the flexible intimal flap in type B aortic dissection via a monolithic arbitrary Lagrangian/Eulerian fluid-structure interaction model.
    Ryzhakov P; Soudah E; Dialami N
    Int J Numer Method Biomed Eng; 2019 Nov; 35(11):e3239. PubMed ID: 31336022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid-structure interaction simulations of venous valves: A monolithic ALE method for large structural displacements.
    Calandrini S; Aulisa E
    Int J Numer Method Biomed Eng; 2019 Feb; 35(2):e3156. PubMed ID: 30226292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PIV validation of blood-heart valve leaflet interaction modelling.
    Kaminsky R; Dumont K; Weber H; Schroll M; Verdonck P
    Int J Artif Organs; 2007 Jul; 30(7):640-8. PubMed ID: 17674341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation the effect of geometry and position of polymeric heart valves on hemodynamic with fluid-structure interaction numerical method.
    Farokhi EA; Niroomand-Oscuii H; Yazdanpanah K
    Med Eng Phys; 2021 Nov; 97():10-17. PubMed ID: 34756333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of numerical methods for cerebrospinal fluid representation and fluid-structure interaction during transverse impact of a finite element spinal cord model.
    Rycman A; McLachlin S; Cronin DS
    Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3570. PubMed ID: 34997836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.
    Krittian S; Janoske U; Oertel H; Böhlke T
    Ann Biomed Eng; 2010 Apr; 38(4):1426-41. PubMed ID: 20058187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Numerical Simulation Method for the One-Step Compression-Stamping Process of Continuous Fiber Reinforced Thermoplastic Composites.
    Chen L; Deng T; Zhou H; Huang Z; Peng X; Zhou H
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A monolithic fluid-structure interaction framework applied to red blood cells.
    Cetin A; Sahin M
    Int J Numer Method Biomed Eng; 2019 Feb; 35(2):e3171. PubMed ID: 30426712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of leaky Rayleigh wave at air-solid cylindrical interfaces by finite element method.
    Zhao Y; Shen Z; Lu J; Ni X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1169-72. PubMed ID: 16814831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data.
    Yang C; Tang D; Atluri S
    Comput Model Eng Sci; 2011; 72(1):53-77. PubMed ID: 21927582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid-structure interaction simulation of the brain-skull interface for acute subdural haematoma prediction.
    Zhou Z; Li X; Kleiven S
    Biomech Model Mechanobiol; 2019 Feb; 18(1):155-173. PubMed ID: 30151812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of patient-specific left ventricular model with both mitral and aortic valves by FSI approach.
    Su B; Zhong L; Wang XK; Zhang JM; Tan RS; Allen JC; Tan SK; Kim S; Leo HL
    Comput Methods Programs Biomed; 2014 Feb; 113(2):474-82. PubMed ID: 24332277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.