These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 36295316)
1. Fractional Order Dual-Phase-Lag Model of Heat Conduction in a Composite Spherical Medium. Kukla S; Siedlecka U; Ciesielski M Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295316 [TBL] [Abstract][Full Text] [Related]
2. A Fractional Single-Phase-Lag Model of Heat Conduction for Describing Propagation of the Maximum Temperature in a Finite Medium. Kukla S; Siedlecka U Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266600 [TBL] [Abstract][Full Text] [Related]
3. Analytical and numerical analysis of the dual-pulse lag heat transfer in a three-dimensional tissue subjected to a moving multi-point laser beam. Partovi B; Ahmadikia H; Mosharaf-Dehkordi M J Therm Biol; 2023 Feb; 112():103431. PubMed ID: 36796889 [TBL] [Abstract][Full Text] [Related]
4. Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy. Kumar D; Rai KN J Therm Biol; 2017 Jul; 67():49-58. PubMed ID: 28558937 [TBL] [Abstract][Full Text] [Related]
5. Numerical analysis of local non-equilibrium heat transfer in layered spherical tissue during magnetic hyperthermia. Liu KC; Yang YC Comput Methods Biomech Biomed Engin; 2020 Oct; 23(13):968-980. PubMed ID: 32530754 [TBL] [Abstract][Full Text] [Related]
6. Fractional thermoelasticity problem for an infinite solid with a penny-shaped crack under prescribed heat flux across its surfaces. Povstenko Y; Kyrylych T Philos Trans A Math Phys Eng Sci; 2020 May; 378(2172):20190289. PubMed ID: 32389083 [TBL] [Abstract][Full Text] [Related]
7. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment. Kumar P; Kumar D; Rai KN J Therm Biol; 2015; 49-50():98-105. PubMed ID: 25774032 [TBL] [Abstract][Full Text] [Related]
8. A comparative study of a thermoelastic problem for an infinite rigid cylinder with thermal properties using a new heat conduction model including fractional operators without non-singular kernels. Abouelregal AE Arch Appl Mech; 2022; 92(11):3141-3161. PubMed ID: 35966048 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the Quality Factor Due to the Static Prestress in Classical Caputo and Caputo-Fabrizio Fractional Thermoelastic Silicon Microbeam. Youssef HM; El-Bary AA; Al-Lehaibi EAN Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33374721 [TBL] [Abstract][Full Text] [Related]
10. Heat transfer analysis for tissue with surface heat flux based on the non-linearized form of the three-phase-lag model. Liu KC; Leu JS J Therm Biol; 2023 Feb; 112():103436. PubMed ID: 36796893 [TBL] [Abstract][Full Text] [Related]
11. Fractional Order Two-Temperature Dual-Phase-Lag Thermoelasticity with Variable Thermal Conductivity. Mondal S; Mallik SH; Kanoria M Int Sch Res Notices; 2014; 2014():646049. PubMed ID: 27419210 [TBL] [Abstract][Full Text] [Related]
12. Computational analysis of a class of singular nonlinear fractional multi-order heat conduction model of the human head. Izadi M; Atangana A Sci Rep; 2024 Feb; 14(1):3466. PubMed ID: 38342935 [TBL] [Abstract][Full Text] [Related]
13. Numerical simulation of fractional non-Fourier heat conduction in skin tissue. Goudarzi P; Azimi A J Therm Biol; 2019 Aug; 84():274-284. PubMed ID: 31466765 [TBL] [Abstract][Full Text] [Related]
14. An External Circular Crack in an Infinite Solid under Axisymmetric Heat Flux Loading in the Framework of Fractional Thermoelasticity. Povstenko Y; Kyrylych T; Woźna-Szcześniak B; Kawa R; Yatsko A Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052096 [TBL] [Abstract][Full Text] [Related]
15. A fractional differential equation model for the COVID-19 transmission by using the Caputo-Fabrizio derivative. Baleanu D; Mohammadi H; Rezapour S Adv Differ Equ; 2020; 2020(1):299. PubMed ID: 32572336 [TBL] [Abstract][Full Text] [Related]
16. Adomian decomposition sumudu transform method for solving a solid and porous fin with temperature dependent internal heat generation. Patel T; Meher R Springerplus; 2016; 5():489. PubMed ID: 27218004 [TBL] [Abstract][Full Text] [Related]
17. Fractional Moore-Gibson-Thompson heat transfer model with nonlocal and nonsingular kernels of a rotating viscoelastic annular cylinder with changeable thermal properties. Abouelregal AE; Alesemi M PLoS One; 2022; 17(6):e0269862. PubMed ID: 35727846 [TBL] [Abstract][Full Text] [Related]
18. Approximate series solution of multi-dimensional, time fractional-order (heat-like) diffusion equations using FRDTM. Singh BK; Srivastava VK R Soc Open Sci; 2015 Apr; 2(4):140511. PubMed ID: 26064639 [TBL] [Abstract][Full Text] [Related]
19. Hyperthermia therapy of cancerous tumor sitting in breast via analytical fractional model. Turkyilmazoglu M Comput Biol Med; 2023 Sep; 164():107271. PubMed ID: 37494822 [TBL] [Abstract][Full Text] [Related]
20. Fractional telegraph equation under moving time-harmonic impact. Povstenko Y; Ostoja-Starzewski M Int J Heat Mass Transf; 2022 Jan; 182():. PubMed ID: 36777796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]