These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36295318)

  • 1. Dislocation Mechanism and Grain Refinement of Surface Modification of NV E690 Cladding Layer Induced by Laser Shock Peening.
    Cao Y; Zhu P; Yang Y; Shi W; Qiu M; Wang H; Xie P
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser Shock Peening Improves the Corrosion Resistance of an E690 High-Strength Steel Cladding Layer.
    Qin J; Cao Y; Shi W; Wang Z; Qiu M
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of laser shock peening on microstructure and mechanical properties of laser cladding 30CrMnSiNi2A high-strength steel.
    Wang L; Yu K; Cheng X; Cao T; Zhou L
    Sci Rep; 2023 Jun; 13(1):9971. PubMed ID: 37340078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of laser shock peening on fatigue life and surface characteristics of stainless steel cortical bone screws.
    O'Sullivan CB; Bertone AL; Litsky AS; Robertson JT
    Am J Vet Res; 2004 Jul; 65(7):972-6. PubMed ID: 15281657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Microstructure and Properties of Welded Joints of Laser Shock Peening on HC420LA Low-Alloy High-Tensile Steel.
    Wang Y; Feng A; Pan X; Chen C; Wei Y; Wang J
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Process Parameters, Microstructure, and Properties of Laser Cladding Fe-Based Alloy on 42CrMo Steel Roller.
    Ju J; Zhou Y; Kang M; Wang J
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30360401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Surface Modification of 347 Stainless Steel upon Shot Peening.
    Li K; Zheng Q; Li C; Shao B; Guo D; Chen D; Sun J; Dong J; Cao P; Shin K
    Scanning; 2017; 2017():2189614. PubMed ID: 29379582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and Wear Resistance of Multi-Layer Ni-Based Alloy Cladding Coating on 316L SS under Different Laser Power.
    Qian S; Dai Y; Guo Y; Zhang Y
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33562226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser Shock Peening: Fundamentals and Mechanisms of Metallic Material Wear Resistance Improvement.
    Cao X; Wu J; Zhong G; Wu J; Chen X
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Study on Laser Shock Peening of Pure Al Correlating with Laser Shock Wave.
    Wang M; Wang C; Tao X; Zhou Y
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of Fatigue Life of GH3039 Superalloy by Laser Shock Peening.
    Tang Y; Ge M; Zhang Y; Wang T; Zhou W
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32878304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Scanning Speed on Microstructure and Properties of Laser Cladded Fe-Based Amorphous Coatings.
    Hou X; Du D; Chang B; Ma N
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and interfacial metallurgical bonding of 1Cr17Ni2/carbon steel extreme high-speed laser cladding coating.
    Ding Y; Du C; Wang X; Zhang B
    Adv Compos Hybrid Mater; 2021; 4(1):205-211. PubMed ID: 33426466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of CeO
    Gao Z; Ren H; Yuan Y; Gao Z; Liu E; Zhang C
    Micron; 2021 Nov; 150():103146. PubMed ID: 34547637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Influence of Laser Power on the Heat-Flow Multi-Field Coupling of Laser Cladding Incoloy 926 on Stainless Steel Surface.
    Li L; Cui Q; Zhou J; Lu Z; Sun H; Jiang H; Guo W; Wu A
    Materials (Basel); 2024 Sep; 17(19):. PubMed ID: 39410341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Laser Shock Peening on Fretting Fatigue Life of TC11 Titanium Alloy.
    Yang X; Zhang H; Cui H; Wen C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33105746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Laser Peening on the Corrosion Properties of 304L Stainless Steel.
    Yoo YR; Choi SH; Kim YS
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Electromagnetic Fields on the Microstructure of Laser Cladding.
    Shi Y; Zhou X; Wang X; Feng X; Peng L
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Fe Content on Microstructure and Properties of Laser Cladding Inconel 625 Alloy.
    Liu W; Li L; Mi G; Wang J; Pan Y
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Formation of Laser-Cladded Layer on Thin-Walled Tube of Aluminum Alloy in Underwater Environment.
    Liu C; Guo N; Cheng Q; Fu Y; Zhang X
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.