BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36295398)

  • 1. Microstructure and Mechanical Properties of Porous NiTi Alloy Prepared by Integration of Gel-Casting and Microwave Sintering.
    He Z; Wang Z; Wang D; Liu X; Duan B
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Solid Loading on the Gel-Casting of Porous NiTi Alloys.
    Wang Z; He Z; Duan B; Liu X; Wang D
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.
    Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys.
    Jian YT; Yang Y; Tian T; Stanford C; Zhang XP; Zhao K
    PLoS One; 2015; 10(6):e0128138. PubMed ID: 26047515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques.
    Liu P; Zhang D; Dai Y; Lin J; Li Y; Wen C
    Acta Biomater; 2020 Sep; 114():485-496. PubMed ID: 32738505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Sintering Temperature on Microstructure Characteristics of Porous NiTi Alloy Fabricated via Elemental Powder Sintering.
    Miao T; Zhan S; Chen X; Hu L
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys.
    Xu JL; Tao SC; Bao LZ; Luo JM; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():156-165. PubMed ID: 30678900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering.
    Xie F; He X; Lu X; Cao S; Qu X
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1085-90. PubMed ID: 23827546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave versus Conventional Sintering of NiTi Alloys Processed by Mechanical Alloying.
    Teixeira RDS; Oliveira RV; Rodrigues PF; Mascarenhas J; Neves FCFP; Paula ADS
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping.
    Krishna BV; Bose S; Bandyopadhyay A
    J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):481-490. PubMed ID: 18937263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres.
    Zou C; Zhang E; Li M; Zeng S
    J Mater Sci Mater Med; 2008 Jan; 19(1):401-5. PubMed ID: 17607525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.
    Rao X; Chu CL; Zheng YY
    J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and shape memory properties of porous Ni
    Taheri Andani M; Saedi S; Turabi AS; Karamooz MR; Haberland C; Karaca HE; Elahinia M
    J Mech Behav Biomed Mater; 2017 Apr; 68():224-231. PubMed ID: 28189977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys.
    Shao Y; Yu W; Wu J; Ma H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lamellar structure/processing relationships and compressive properties of porous Ti6Al4V alloys fabricated by freeze casting.
    Li F; Xue X; Jia T; Dang W; Zhao K; Tang Y
    J Mech Behav Biomed Mater; 2020 Jan; 101():103424. PubMed ID: 31514056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabricated High-Strength, Low-Elastic Modulus Biomedical Ti-24Nb-4Zr-8Sn Alloy via Powder Metallurgy.
    Guo AXY; Cao B; Wang Z; Ma X; Cao SC
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering.
    Deng B; Bruzzaniti A; Cheng GJ
    Int J Nanomedicine; 2018; 13():8217-8230. PubMed ID: 30555235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Potential of MIM-Manufactured Porous NiTi as a Vascular Drug Delivery Material.
    Zhou Y; Wang T; Lu P; Wan Z; He H; Wang J; Li D; Li Y; Shu C
    Ann Biomed Eng; 2024 Jun; ():. PubMed ID: 38880816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.