These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36295719)

  • 1. A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes.
    Dharmavaram S; Wan X; Perotti LE
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving Particles Through a Finite Element Mesh.
    Peskin AP; Hardin GR
    J Res Natl Inst Stand Technol; 1998; 103(1):77-91. PubMed ID: 28009377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite Element Formulation of Multiphasic Shell Elements for Cell Mechanics Analyses in FEBio.
    Hou JC; Maas SA; Weiss JA; Ateshian GA
    J Biomech Eng; 2018 Aug; 140(12):. PubMed ID: 30098156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element method for modeling diffusion of alpha-emitting particles in tissue.
    Zhang IP; Cohen GN; Damato AL
    Med Phys; 2024 Mar; 51(3):2263-2276. PubMed ID: 37878762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation.
    Aryan H; Beigzadeh B; Siavashi M
    Comput Methods Programs Biomed; 2022 Jun; 219():106778. PubMed ID: 35381489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of biological soft tissue surrounded by a deformable membrane that controls transmembrane flow.
    Hirabayashi S; Iwamoto M
    Theor Biol Med Model; 2018 Dec; 15(1):21. PubMed ID: 30348205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
    Srivastava S; Yazdchi K; Luding S
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immersed finite element method and its applications to biological systems.
    Liu WK; Liu Y; Farrell D; Zhang L; Wang XS; Fukui Y; Patankar N; Zhang Y; Bajaj C; Lee J; Hong J; Chen X; Hsu H
    Comput Methods Appl Mech Eng; 2006 Feb; 195(13-16):1722-1749. PubMed ID: 20200602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of numerical methods for cerebrospinal fluid representation and fluid-structure interaction during transverse impact of a finite element spinal cord model.
    Rycman A; McLachlin S; Cronin DS
    Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3570. PubMed ID: 34997836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
    Einstein DR; Reinhall P; Nicosia M; Cochran RP; Kunzelman K
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):33-44. PubMed ID: 12623436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-Aware Matching of Implicit Surfaces Based on Thin Shell Energies.
    Iglesias JA; Rumpf M; Scherzer O
    Found Comut Math; 2018; 18(4):891-927. PubMed ID: 30956649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A coupled approach for fluid saturated poroelastic media and immersed solids for modeling cell-tissue interactions.
    Rauch AD; Vuong AT; Yoshihara L; Wall WA
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3139. PubMed ID: 30070046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles.
    Yamamoto R; Molina JJ; Nakayama Y
    Soft Matter; 2021 Apr; 17(16):4226-4253. PubMed ID: 33908448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurosurgery Simulation Using Non-linear Finite Element Modeling and Haptic Interaction.
    Lee HP; Audette M; Joldes GR; Enquobahrie A
    Proc SPIE Int Soc Opt Eng; 2012 Feb; 8316():83160H. PubMed ID: 24465116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast computation of soft tissue thermal response under deformation based on fast explicit dynamics finite element algorithm for surgical simulation.
    Zhang J; Chauhan S
    Comput Methods Programs Biomed; 2020 Apr; 187():105244. PubMed ID: 31805458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling ternary fluids in contact with elastic membranes.
    Pepona M; Shek ACM; Semprebon C; Krüger T; Kusumaatmaja H
    Phys Rev E; 2021 Feb; 103(2-1):022112. PubMed ID: 33735964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2010 Jun; 132(6):061006. PubMed ID: 20887031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.