These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Transport and Separation of the Silver Ion with Nechifor G; Păncescu FM; Albu PC; Grosu AR; Oprea O; Tanczos SK; Bungău C; Grosu VA; Ioan MR; Nechifor AC Membranes (Basel); 2021 Nov; 11(12):. PubMed ID: 34940437 [TBL] [Abstract][Full Text] [Related]
7. Operational Limits of the Bulk Hybrid Liquid Membranes Based on Dispersion Systems. Ferencz Dinu A; Grosu AR; Al-Ani HNA; Nechifor AC; Tanczos SK; Albu PC; Crăciun ME; Ioan MR; Grosu VA; Nechifor G Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207110 [TBL] [Abstract][Full Text] [Related]
8. pH and Design on Albu PC; Tanczos SK; Ferencz Dinu A; Pîrțac A; Grosu AR; Pașcu D; Grosu VA; Bungău C; Nechifor AC Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448335 [TBL] [Abstract][Full Text] [Related]
9. Green Synthesis and Catalytic Activity of Silver Nanoparticles Based on Mahiuddin M; Saha P; Ochiai B Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32911754 [TBL] [Abstract][Full Text] [Related]
10. Catalytic reduction-adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. Guo P; Tang L; Tang J; Zeng G; Huang B; Dong H; Zhang Y; Zhou Y; Deng Y; Ma L; Tan S J Colloid Interface Sci; 2016 May; 469():78-85. PubMed ID: 26871277 [TBL] [Abstract][Full Text] [Related]
11. Facile synthesis of silver nanoparticles stabilized by cationic polynorbornenes and their catalytic activity in 4-nitrophenol reduction. Baruah B; Gabriel GJ; Akbashev MJ; Booher ME Langmuir; 2013 Apr; 29(13):4225-34. PubMed ID: 23461821 [TBL] [Abstract][Full Text] [Related]
12. Natural cellulose fiber derived hollow-tubular-oriented polydopamine: In-situ formation of Ag nanoparticles for reduction of 4-nitrophenol. Cao E; Duan W; Wang F; Wang A; Zheng Y Carbohydr Polym; 2017 Feb; 158():44-50. PubMed ID: 28024541 [TBL] [Abstract][Full Text] [Related]
13. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Wu S; Yan S; Qi W; Huang R; Cui J; Su R; He Z Nanoscale Res Lett; 2015; 10():213. PubMed ID: 25991916 [TBL] [Abstract][Full Text] [Related]
14. Preparation and catalytic evaluation of Au/γ -Al Saira F; Firdous N; Qureshi R; Ihsan A Turk J Chem; 2020; 44(2):448-460. PubMed ID: 33488169 [TBL] [Abstract][Full Text] [Related]
15. Facile fabrication of silver nanoparticles deposited cellulose microfiber nanocomposites for catalytic application. Xu P; Cen C; Chen N; Lin H; Wang Q; Xu N; Tang J; Teng Z J Colloid Interface Sci; 2018 Sep; 526():194-200. PubMed ID: 29729970 [TBL] [Abstract][Full Text] [Related]
17. Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes. Dimulescu Nica IA; Nechifor AC; Bǎrdacǎ Urducea C; Oprea O; Paşcu D; Totu EE; Albu PC; Nechifor G; Bungău SG Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34062891 [TBL] [Abstract][Full Text] [Related]
18. Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Narayanan KB; Park HH; Sakthivel N Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():485-90. PubMed ID: 23973598 [TBL] [Abstract][Full Text] [Related]
19. Noble metal nanoparticles (M Saravanakumar K; Priya VS; Balakumar V; Prabavathi SL; Muthuraj V Environ Res; 2022 Sep; 212(Pt A):113185. PubMed ID: 35395238 [TBL] [Abstract][Full Text] [Related]
20. Janus graphene oxide nanosheet: A promising additive for enhancement of polymeric membranes performance prepared via phase inversion. Akbari M; Shariaty-Niassar M; Matsuura T; Ismail AF J Colloid Interface Sci; 2018 Oct; 527():10-24. PubMed ID: 29775817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]