BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 36295928)

  • 1. Application of Microfluidic Chips in the Detection of Airborne Microorganisms.
    Wang J; Yang L; Wang H; Wang L
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Applications of microfluidic paper-based chips in environmental analysis and detection].
    Zhang Y; Qi J; Liu F; Wang N; Sun X; Cui R; Yu J; Ye J; Liu P; Li B; Chen L
    Se Pu; 2021 Aug; 39(8):802-815. PubMed ID: 34212581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances on Bioaerosol Collection and Detection in Microfluidic Chips.
    Wang L; Qi W; Liu Y; Essien D; Zhang Q; Lin J
    Anal Chem; 2021 Jul; 93(26):9013-9022. PubMed ID: 34160193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-site bioaerosol sampling and detection in microfluidic platforms.
    Lee I; Jeon E; Lee J
    Trends Analyt Chem; 2023 Jan; 158():116880. PubMed ID: 36514783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conventional and microfluidic methods for airborne virus isolation and detection.
    Krokhine S; Torabi H; Doostmohammadi A; Rezai P
    Colloids Surf B Biointerfaces; 2021 Oct; 206():111962. PubMed ID: 34352699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic System for Rapid Detection of Airborne Pathogenic Fungal Spores.
    Li X; Zhang X; Liu Q; Zhao W; Liu S; Sui G
    ACS Sens; 2018 Oct; 3(10):2095-2103. PubMed ID: 30264565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure to airborne microorganisms in fiberboard and chipboard factories.
    Dutkiewicz J; Olenchock S; Krysińska-Traczyk E; Skórska C; Sitkowska J; Prazmo Z
    Ann Agric Environ Med; 2001; 8(2):191-9. PubMed ID: 11748877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses.
    Pyankov OV; Agranovski IE; Pyankova O; Mokhonova E; Mokhonov V; Safatov AS; Khromykh AA
    Environ Microbiol; 2007 Apr; 9(4):992-1000. PubMed ID: 17359271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Gas Sensors: Detection Principle and Applications.
    Kaaliveetil S; Yang J; Alssaidy S; Li Z; Cheng YH; Menon NH; Chande C; Basuray S
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne pathogenic microorganisms and air cleaning technology development: A review.
    Song L; Zhou J; Wang C; Meng G; Li Y; Jarin M; Wu Z; Xie X
    J Hazard Mater; 2022 Feb; 424(Pt B):127429. PubMed ID: 34688006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Methods of isothermal nucleic acid amplification-based microfluidic chips for pathogen microorganism detection].
    He XP; Zou BJ; Qi XM; Chen S; Lu Y; Huang Q; Zhou GH
    Yi Chuan; 2019 Jul; 41(7):611-624. PubMed ID: 31307970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in airborne microorganisms detection using biosensors: A critical review.
    Ma J; Du M; Wang C; Xie X; Wang H; Zhang Q
    Front Environ Sci Eng; 2021; 15(3):47. PubMed ID: 33842019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips.
    Yuan Y; Jia H; Xu D; Wang J
    Sci Total Environ; 2023 Jan; 857(Pt 2):159563. PubMed ID: 36265627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review.
    Mi F; Hu C; Wang Y; Wang L; Peng F; Geng P; Guan M
    Anal Bioanal Chem; 2022 Apr; 414(9):2883-2902. PubMed ID: 35064302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a wet scrubber with electrolyzed water spray-Part II: Airborne culturable bacteria removal.
    Li Z; Li B; Zheng W; Tu J; Zheng H; Wang Y
    J Air Waste Manag Assoc; 2019 May; 69(5):603-610. PubMed ID: 30633629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of airborne microorganisms by real-time PCR: optimistic findings and research challenges.
    Oppliger A; Masclaux FG; Niculita-Hirzel H
    Front Biosci (Schol Ed); 2011 Jan; 3(2):445-53. PubMed ID: 21196388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of microorganisms in hospital air before and during the SARS-CoV-2 pandemic.
    Zhao YH; Qu H; Wang Y; Wang R; Zhao Y; Huang MX; Li B; Zhu WM
    Eur Rev Med Pharmacol Sci; 2022 Feb; 26(3):1020-1027. PubMed ID: 35179768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability of airborne microflora in a hospital ward within a period of one year.
    Augustowska M; Dutkiewicz J
    Ann Agric Environ Med; 2006; 13(1):99-106. PubMed ID: 16841880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to airborne microorganisms in Polish sawmills.
    Dutkiewicz J; Krysińska-Traczyk E; Prazmo Z; Skoŕska C; Sitkowska J
    Ann Agric Environ Med; 2001; 8(1):71-80. PubMed ID: 11426928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Capture and Analysis of Airborne Staphylococcus aureus in the Hospital Using a Microfluidic Chip.
    Jiang X; Liu Y; Liu Q; Jing W; Qin K; Sui G
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.