These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36295949)

  • 41. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting.
    Lu S; Boussaid F
    Sensors (Basel); 2015 Nov; 15(11):29192-208. PubMed ID: 26610492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode.
    Liu H; Cong C; Zhao Q; Ma K
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method.
    Zhu M; Worthington E; Njuguna J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1309-18. PubMed ID: 19574142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.
    Badel A; Benayad A; Lefeuvre E; Lebrun L; Richard C; Guyomar D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):673-84. PubMed ID: 16615571
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigating the influence of the viscoelastic material as a heart muscle simulator on the powering leadless pacemaker from heartbeats by using a piezoelectric beam.
    Siami M; Jahani K; Esmaili P; Rezaee M
    Proc Inst Mech Eng H; 2022 Sep; 236(9):1414-1429. PubMed ID: 35861574
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling and Efficiency Analysis of a Piezoelectric Energy Harvester Based on the Flow Induced Vibration of a Piezoelectric Composite Pipe.
    Zhou M; Al-Furjan MSH; Wang B
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic Modeling and Experimental Validation of an Impact-Driven Piezoelectric Energy Harvester in Magnetic Field.
    Chen CD; Wu YH; Su PW
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138234
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modeling of a Symmetric Five-Bar Displacement Amplification Compliant Mechanism for Energy Harvesting.
    Elsisy MM; Arafa MH; Saleh CA; Anis YH
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.
    Kim H; Priya S; Stephanou H; Uchino K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1851-9. PubMed ID: 17941391
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An Arc-shaped Piezoelectric Bistable Vibration Energy Harvester: Modeling and Experiments.
    Zhang X; Yang W; Zuo M; Tan H; Fan H; Mao Q; Wan X
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fabrication and Characterization of the Li-Doped ZnO Thin Films Piezoelectric Energy Harvester with Multi-Resonant Frequencies.
    Zhao X; Li S; Ai C; Liu H; Wen D
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30917569
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of electric load impedances on the performance of sandwich piezoelectric transducers.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1280-6. PubMed ID: 15553512
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Frequency Up-Converted Hybrid Energy Harvester Using Transverse Impact-Driven Piezoelectric Bimorph for Human-Limb Motion.
    Halim MA; Kabir MH; Cho H; Park JY
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31618939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Piezoelectric Performance of a Symmetrical Ring-Shaped Piezoelectric Energy Harvester Using PZT-5H under a Temperature Gradient.
    Zhou N; Li R; Ao H; Zhang C; Jiang H
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610622
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.
    Li X; Song J; Feng S; Xie X; Li Z; Wang L; Pu Y; Soh AK; Shen J; Lu W; Liu S
    Nanotechnology; 2016 Dec; 27(48):485402. PubMed ID: 27819801
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual Piezoelectric Energy Investing and Harvesting Interface for High-Voltage Input.
    Khan MB; Saif H; Lee K; Lee Y
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vibration Energy Harvesting from the Subwavelength Interface State of a Topological Metamaterial Beam.
    Lu Y; Wang Z; Zhu X; Hu C; Yang J; Wu Y
    Micromachines (Basel); 2022 May; 13(6):. PubMed ID: 35744477
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
    Tsukamoto T; Umino Y; Shiomi S; Yamada K; Suzuki T
    Sci Technol Adv Mater; 2018; 19(1):660-668. PubMed ID: 30275914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.