These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36295964)

  • 1. Modeling the Heating Dynamics of a Semiconductor Bridge Initiator with Deep Neural Network.
    Xu J; Tan J; Li H; Ye Y; Chen D
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO
    Xu J; Tai Y; Ru C; Dai J; Ye Y; Shen R; Zhu P
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5580-5589. PubMed ID: 28094917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From nanoparticles to on-chip 3D nanothermite: electrospray deposition of reactive Al/CuO@NC onto semiconductor bridge and its application for rapid ignition.
    Dai J; Wang C; Wang Y; Xu W; Xu J; Shen Y; Zhang W; Ye Y; Shen R
    Nanotechnology; 2020 May; 31(19):195712. PubMed ID: 31978923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and accurate dose predictions for novel radiotherapy treatments in heterogeneous phantoms using conditional 3D-UNet generative adversarial networks.
    Mentzel F; Kröninger K; Lerch M; Nackenhorst O; Paino J; Rosenfeld A; Saraswati A; Tsoi AC; Weingarten J; Hagenbuchner M; Guatelli S
    Med Phys; 2022 May; 49(5):3389-3404. PubMed ID: 35184310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature Prediction of Heating Furnace Based on Deep Transfer Learning.
    Zhai N; Zhou X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data Loss Reconstruction Method for a Bridge Weigh-in-Motion System Using Generative Adversarial Networks.
    Zhuang Y; Qin J; Chen B; Dong C; Xue C; Easa SM
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Method of Information Protection for Collaborative Deep Learning under GAN Model Attack.
    Yan X; Cui B; Xu Y; Shi P; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):871-881. PubMed ID: 31514150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MSFF-CDCGAN: A novel method to predict RNA secondary structure based on Generative Adversarial Network.
    Yuan S; Gong Y; Wang G; Zhang B; Liu Y; Zhang H
    Methods; 2022 Aug; 204():368-375. PubMed ID: 35490852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DL-CRC: Deep Learning-Based Chest Radiograph Classification for COVID-19 Detection: A Novel Approach.
    Sakib S; Tazrin T; Fouda MM; Fadlullah ZM; Guizani M
    IEEE Access; 2020; 8():171575-171589. PubMed ID: 34976555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network.
    Zhang H; Fang C; Xie X; Yang Y; Mei W; Jin D; Fei P
    Biomed Opt Express; 2019 Mar; 10(3):1044-1063. PubMed ID: 30891329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of generative adversarial network and convolutional neural network for automatic subcentimeter pulmonary adenocarcinoma classification.
    Wang Y; Zhou L; Wang M; Shao C; Shi L; Yang S; Zhang Z; Feng M; Shan F; Liu L
    Quant Imaging Med Surg; 2020 Jun; 10(6):1249-1264. PubMed ID: 32550134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics.
    Xie J; Yao B
    Comput Biol Med; 2022 Jul; 146():105586. PubMed ID: 35751197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physics-Guided Generative Adversarial Networks for Sea Subsurface Temperature Prediction.
    Meng Y; Rigall E; Chen X; Gao F; Dong J; Chen S
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3357-3370. PubMed ID: 34757914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research on SCB discharge behavior with atomic emission spectroscopy].
    Zhang L; Feng HY; Zhu SG; Wu R; Zhang WC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3130-3. PubMed ID: 20102001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-based deep learning for modeling nonlinear pulse propagation in optical fibers.
    Sui H; Zhu H; Luo B; Taccheo S; Zou X; Yan L
    Opt Lett; 2022 Aug; 47(15):3912-3915. PubMed ID: 35913346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.