These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3629598)

  • 1. Metabolic activation of the pesticide azinphos-methyl by perfused mouse livers.
    Sultatos LG; Minor LD
    Toxicol Appl Pharmacol; 1987 Sep; 90(2):227-34. PubMed ID: 3629598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the liver in mediating the acute toxicity of the pesticide methyl parathion in the mouse.
    Sultatos LG
    Drug Metab Dispos; 1987; 15(5):613-7. PubMed ID: 2891476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the hepatic biotransformation of the phosphorothioate pesticide chlorpyrifos.
    Sultatos LG
    Toxicology; 1988 Oct; 51(2-3):191-200. PubMed ID: 2459806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of glutathione in the detoxification of the insecticides methyl parathion and azinphos-methyl in the mouse.
    Sultatos LG; Woods L
    Toxicol Appl Pharmacol; 1988 Oct; 96(1):168-74. PubMed ID: 3188022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic activation of phosphorothioate pesticides: role of the liver.
    Sultatos LG; Minor LD; Murphy SD
    J Pharmacol Exp Ther; 1985 Mar; 232(3):624-8. PubMed ID: 2579231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of phenobarbital pretreatment on the metabolism and acute toxicity of the pesticide parathion in the mouse.
    Sultatos LG
    Toxicol Appl Pharmacol; 1986 Oct; 86(1):105-11. PubMed ID: 3764930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting the biotransformation of the pesticide parathion by the isolated perfused mouse liver.
    Sultatos LG; Minor LD
    Drug Metab Dispos; 1986; 14(2):214-20. PubMed ID: 2870897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of the organophosphorus insecticides parathion and methyl parathion in male and female rat livers perfused in situ.
    Zhang HX; Sultatos LG
    Drug Metab Dispos; 1991; 19(2):473-7. PubMed ID: 1676657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic activation of the organophosphorus insecticides chlorpyrifos and fenitrothion by perfused rat liver.
    Sultatos LG
    Toxicology; 1991; 68(1):1-9. PubMed ID: 1714638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of hepatic biotransformation in mediating the acute toxicity of the phosphorothionate insecticide chlorpyrifos.
    Sultatos LG; Shao M; Murphy SD
    Toxicol Appl Pharmacol; 1984 Mar; 73(1):60-8. PubMed ID: 6200955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance in cholinesterase activity after an acute and subchronic exposure to azinphos-methyl in the freshwater gastropod Biomphalaria straminea.
    Bianco K; Otero S; Oliver AB; Nahabedian D; Kristoff G
    Ecotoxicol Environ Saf; 2014 Nov; 109():85-92. PubMed ID: 25173743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery study of cholinesterases and neurotoxic signs in the non-target freshwater invertebrate Chilina gibbosa after an acute exposure to an environmental concentration of azinphos-methyl.
    Cossi PF; Beverly B; Carlos L; Kristoff G
    Aquat Toxicol; 2015 Oct; 167():248-56. PubMed ID: 26364254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive Sampling for Indoor and Outdoor Exposures to Chlorpyrifos, Azinphos-Methyl, and Oxygen Analogs in a Rural Agricultural Community.
    Gibbs JL; Yost MG; Negrete M; Fenske RA
    Environ Health Perspect; 2017 Mar; 125(3):333-341. PubMed ID: 27517732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative high-performance liquid chromatography and mass spectrometry for the analysis of the in vitro metabolism of the insecticide azinphos-methyl (guthion) by rat liver homogenates.
    Lin SN; Chen CY; Murphy SD; Caprioli RM
    J Agric Food Chem; 1980; 28(1):85-8. PubMed ID: 7358940
    [No Abstract]   [Full Text] [Related]  

  • 15. Estimation of dermal exposure to pesticides and its use in risk assessment.
    Franklin CA
    Can J Physiol Pharmacol; 1984 Aug; 62(8):1037-9. PubMed ID: 6488081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the additivity of in vitro inhibition of cholinesterase by mixtures of chlorpyrifos-oxon and azinphos-methyl-oxon.
    Richardson JR; Chambers HW; Chambers JE
    Toxicol Appl Pharmacol; 2001 Apr; 172(2):128-39. PubMed ID: 11298499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Azinphos methyl residues in shallow groundwater from the fruit production region of northern Patagonia, Argentina.
    Loewy RM; Carvajal LG; Novelli M; Pechen de D'Angelo AM
    J Environ Sci Health B; 2006; 41(6):869-81. PubMed ID: 16893776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of humidity and rain on uptake and metabolism of 14C-azinphos-methyl in bean plants.
    Steffens W; Wieneke J
    Arch Environ Contam Toxicol; 1975; 3(3):364-70. PubMed ID: 1190845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo studies of cholinesterases and carboxylesterases in Planorbarius corneus exposed to a phosphorodithioate insecticide: Finding the most sensitive combination of enzymes, substrates, tissues and recovery capacity.
    Otero S; Kristoff G
    Aquat Toxicol; 2016 Nov; 180():186-195. PubMed ID: 27723570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of high-performance liquid chromatography and anticholinesterase assay for measuring azinphos-methyl metabolism in vitro.
    Lin SN; Caprioli RM; Murphy SD
    J Agric Food Chem; 1983; 31(4):756-9. PubMed ID: 6619428
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.