These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36295986)

  • 1. Magnetic Force-Assisted Nonlinear Three-Dimensional Wideband Energy Harvester Using Magnetostrictive/Piezoelectric Composite Transducers.
    Lin Z; Li H; Lv S; Zhang B; Wu Z; Yang J
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.
    Zhao N; Yang J; Yu Q; Zhao J; Liu J; Wen Y; Li P
    Rev Sci Instrum; 2016 Jan; 87(1):015003. PubMed ID: 26827346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications.
    Pertin O; Guha K; Jakšić O; Jakšić Z; Iannacci J
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Direction Self-Tuning Two-Dimensional Piezoelectric Vibration Energy Harvester.
    Zhao H; Wei X; Zhong Y; Wang P
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Study on Widening Bandwidth of Piezoelectric Vibration Energy Harvester with Nonlinear Characteristics.
    Qichang Z; Yang Y; Wei W
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester.
    Zayed AAA; Assal SFM; Nakano K; Kaizuka T; El-Bab AMRF
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester.
    Sun F; Dong R; Zhou R; Xu F; Mei X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tri-directional piezoelectric energy harvester based on U-shaped beam-pendulum structure.
    Mo S; Liu Y; Shang S; Wang H; Yang K
    Rev Sci Instrum; 2021 Jan; 92(1):015002. PubMed ID: 33514251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airfoil-based electromagnetic energy harvester containing parallel array motion between moving coil and multi-pole magnets towards enhanced power density.
    Leung CM; Wang Y; Chen W
    Rev Sci Instrum; 2016 Nov; 87(11):114705. PubMed ID: 27910368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy.
    Zhou Z; Zhang H; Qin W; Zhu P; Wang P; Du W
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Shear-Mode Magnetoelectric Heterostructure with Enhanced Magnetoelectric Response for Stray Power-Frequency Magnetic Field Energy Harvesting.
    He W
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36363904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Pendulum-like Low Frequency Electromagnetic Vibration Energy Harvester Based on Polymer Spring and Coils.
    Li Y; Wang X; Zhang S; Zhou C; Qiao D; Tao K
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester.
    Shi S; Yue Q; Zhang Z; Yuan J; Zhou J; Zhang X; Lu S; Luo X; Shi C; Yu H
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30487394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi-Directional Piezoelectric Multi-Modal Energy Harvester Based on Saw-Tooth Cantilever Array.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters.
    Lekha CS; Kumar AS; Vivek S; Rasi UP; Saravanan KV; Nandakumar K; Nair SS
    Nanotechnology; 2017 Feb; 28(5):055402. PubMed ID: 28008890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.