These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36295989)

  • 1. A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications.
    Feng Y; Bian X; Song B; Li Y; Pan P; Feng J
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-mode and double-beam staggered double-vane traveling-wave tube with high-power and broadband at terahertz band.
    Wang W; Zhang Z; Wang P; Zhao Y; Zhang F; Ruan C
    Sci Rep; 2022 Jul; 12(1):12012. PubMed ID: 35835793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of a 263-GHz Traveling Wave Tube for Electron Paramagnetic Resonance Spectroscopy.
    Pan P; Zheng Y; Li Y; Song X; Feng Z; Feng J; Britt RD; Luhmann NC
    IEEE Trans Electron Devices; 2023 Nov; 70(11):5897-5902. PubMed ID: 39130611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-beam and double-mode staggered double vane travelling wave tube with ultra-wide band.
    Zhang Z; Ruan C; Fahad AK; Zhang C; Su Y; Wang P; He W
    Sci Rep; 2020 Nov; 10(1):20159. PubMed ID: 33214669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Staggered Vane-Shaped Slot-Line Slow-Wave Structure for W-Band Dual-Sheet Electron-Beam-Traveling Wave Tubes.
    Wang Y; Guo J; Dong Y; Xu D; Zheng Y; Lu Z; Wang Z; Wang S
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Symmetrical Quasi-Synchronous Step-Transition Folded Waveguide Slow Wave Structure for 650 GHz Traveling Wave Tubes.
    Xu D; He T; Zheng Y; Lu Z; Gong H; Wang Z; Duan Z; Wang S
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Staggered Double-Segmented Grating Slow-Wave Structure for 340 GHz Traveling-Wave Tube.
    Wang Z; Zhu J; Lu Z; Duan J; Chen H; Wang S; Wang Z; Gong H; Gong Y
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic-band-gap traveling-wave gyrotron amplifier.
    Nanni EA; Lewis SM; Shapiro MA; Griffin RG; Temkin RJ
    Phys Rev Lett; 2013 Dec; 111(23):235101. PubMed ID: 24476286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier.
    Sirigiri JR; Shapiro MA; Temkin RJ
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):258302. PubMed ID: 12857176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A piecewise sine waveguide for terahertz traveling wave tube.
    Zhang L; Jiang Y; Lei W; Hu P; Guo J; Song R; Tang X; Ma G; Chen H; Wei Y
    Sci Rep; 2022 Jun; 12(1):10449. PubMed ID: 35729233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 26-GHz transmitter front-end using double quadrature architecture.
    Lee HS; Park M; Min BW
    PLoS One; 2019; 14(5):e0216474. PubMed ID: 31120917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic-band-gap gyrotron amplifier with picosecond pulses.
    Nanni EA; Jawla S; Lewis SM; Shapiro MA; Temkin RJ
    Appl Phys Lett; 2017 Dec; 111(23):233504. PubMed ID: 29249833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.
    Kim HJ; Nanni EA; Shapiro MA; Sirigiri JR; Woskov PP; Temkin RJ
    Phys Rev Lett; 2010 Sep; 105(13):135101. PubMed ID: 21230783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Measurement of a Novel Overmoded TE
    Lu C; Jiang W; Wu Z; Liu G; Wang J; Pu Y; Luo Y
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbolic-cosine waveguide tapers and oversize rectangular waveguide for reduced broadband insertion loss in W-band electron paramagnetic resonance spectroscopy. II. Broadband characterization.
    Sidabras JW; Strangeway RA; Mett RR; Anderson JR; Mainali L; Hyde JS
    Rev Sci Instrum; 2016 Mar; 87(3):034704. PubMed ID: 27036800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide.
    Bratman VL; Cross AW; Denisov GG; He W; Phelps AD; Ronald K; Samsonov SV; Whyte CG; Young AR
    Phys Rev Lett; 2000 Mar; 84(12):2746-9. PubMed ID: 11017315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uni-traveling-carrier variable confinement waveguide photodiodes.
    Klamkin J; Madison SM; Oakley DC; Napoleone A; O'Donnell FJ; Sheehan M; Missaggia LJ; Caissie JM; Plant JJ; Juodawlkis PW
    Opt Express; 2011 May; 19(11):10199-205. PubMed ID: 21643278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.
    Hornstein MK; Bajaj VS; Griffin RG; Temkin RJ
    IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc; 2007 Feb; 35(1):27-30. PubMed ID: 17687412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region.
    He W; Donaldson CR; Zhang L; Ronald K; Phelps ADR; Cross AW
    Phys Rev Lett; 2017 Nov; 119(18):184801. PubMed ID: 29219603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier.
    Joye CD; Shapiro MA; Sirigiri JR; Temkin RJ
    IEEE Trans Electron Devices; 2009 May; 56(5):818-827. PubMed ID: 20054451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.