These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36296012)

  • 1. Fabrication and Manipulation of Non-Spherical Particles in Microfluidic Channels: A Review.
    Jiang D; Liu S; Tang W
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory inertial focusing in infinite microchannels.
    Mutlu BR; Edd JF; Toner M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress of Inertial Microfluidics in Principle and Application.
    Gou Y; Jia Y; Wang P; Sun C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles.
    Ranjan S; Zeming KK; Jureen R; Fisher D; Zhang Y
    Lab Chip; 2014 Nov; 14(21):4250-62. PubMed ID: 25209150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study of Viscoelastic Microfluidic Particle Manipulation in a Microchannel with Asymmetrical Expansions.
    Wang T; Yuan D; Wan W; Zhang B
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput viscoelastic particle focusing and separation in spiral microchannels.
    Kumar T; Ramachandraiah H; Iyengar SN; Banerjee I; Mårtensson G; Russom A
    Sci Rep; 2021 Apr; 11(1):8467. PubMed ID: 33875755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture.
    Lu Y; Tan W; Shi X; Liu M; Zhu G
    Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channel innovations for inertial microfluidics.
    Tang W; Zhu S; Jiang D; Zhu L; Yang J; Xiang N
    Lab Chip; 2020 Oct; 20(19):3485-3502. PubMed ID: 32910129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles.
    Al-Ali A; Waheed W; Abu-Nada E; Alazzam A
    J Chromatogr A; 2022 Aug; 1676():463268. PubMed ID: 35779391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on inertial microfluidic fabrication methods.
    Akbari Z; Raoufi MA; Mirjalali S; Aghajanloo B
    Biomicrofluidics; 2023 Sep; 17(5):051504. PubMed ID: 37869745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation.
    Farasat M; Aalaei E; Kheirati Ronizi S; Bakhshi A; Mirhosseini S; Zhang J; Nguyen NT; Kashaninejad N
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning assisted fast prediction of inertial lift in microchannels.
    Su J; Chen X; Zhu Y; Hu G
    Lab Chip; 2021 Jun; 21(13):2544-2556. PubMed ID: 33998624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial microfluidics: Recent advances.
    Huang D; Man J; Jiang D; Zhao J; Xiang N
    Electrophoresis; 2020 Dec; 41(24):2166-2187. PubMed ID: 33027533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering viscoelastic cell manipulation in rectangular microchannels.
    Suzuki T; Kalyan S; Berlinicke C; Yoseph S; Zack DJ; Hur SC
    Phys Fluids (1994); 2023 Oct; 35(10):103117. PubMed ID: 37849975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of Non-Spherical Particles in Square Microchannel Flows: A Review.
    Tohme T; Magaud P; Baldas L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation.
    Tang H; Niu J; Jin H; Lin S; Cui D
    Microsyst Nanoeng; 2022; 8():62. PubMed ID: 35685963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation.
    Lu X; Xuan X
    Anal Chem; 2015 Nov; 87(22):11523-30. PubMed ID: 26505113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.