These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36296027)

  • 1. Learning-Based Repetitive Control of a Bowden-Cable-Actuated Exoskeleton with Frictional Hysteresis.
    Shi Y; Guo M; Hui C; Li S; Ji X; Yang Y; Luo X; Xia D
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic Walking Energy Harvester Design for a Wearable Bowden Cable-Actuated Exoskeleton Robot.
    Shi Y; Guo M; Zhong H; Ji X; Xia D; Luo X; Yang Y
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force Transmission Analysis and Optimization of Bowden Cable on Body in a Flexible Exoskeleton.
    Li X; Liu J; Li W; Huang Y; Zhan G
    Appl Bionics Biomech; 2022; 2022():5552166. PubMed ID: 35937097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Control Method of Knee Joint Human-Exoskeleton Interactive System.
    Wang Z; Yang C; Ding Z; Yang T; Guo H; Jiang F; Tian B
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.
    Shi K; Song A; Li Y; Li H; Chen D; Zhu L
    Front Neurorobot; 2021; 15():664062. PubMed ID: 33897402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Neural Network Control for a Wearable Upper Limb Rehabilitation Exoskeleton Robot Driven by Pneumatic Artificial Muscles.
    Zhang H; Fan J; Qin Y; Tian M; Han J
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2589-2597. PubMed ID: 39012735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling and control of cable-driven continuum robot used for minimally invasive surgery.
    Wei X; Ju F; Guo H; Chen B; Wu H
    Proc Inst Mech Eng H; 2023 Jan; 237(1):35-48. PubMed ID: 36457301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots.
    Liang Y; Du Z; Wang W; Sun L
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28974011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Iterative Learning Controller for a Switched Cooperative Allocation Strategy during Sit-to-Stand Tasks with a Hybrid Exoskeleton.
    Molazadeh V; Zhang Q; Bao X; Sharma N
    IEEE Trans Control Syst Technol; 2022 May; 30(3):1021-1036. PubMed ID: 36249864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive fuzzy control for tendon-sheath actuated bending-tip system with unknown friction for robotic flexible endoscope.
    Ren F; Wang X; Yu N; Han J
    Front Neurosci; 2024; 18():1330634. PubMed ID: 38595970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
    Zhang Q; Sun D; Qian W; Xiao X; Guo Z
    Front Neurorobot; 2020; 14():13. PubMed ID: 32161531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design on the Bowden Cable-Driven Upper Limb Soft Exoskeleton.
    Wei W; Qu Z; Wang W; Zhang P; Hao F
    Appl Bionics Biomech; 2018; 2018():1925694. PubMed ID: 30116293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion modelling and error compensation of a cable-driven continuum robot for applications to minimally invasive surgery.
    Qi F; Ju F; Bai D; Wang Y; Chen B
    Int J Med Robot; 2018 Dec; 14(6):e1932. PubMed ID: 30003671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Framework for Determining the Performance and Requirements of Cable-Driven Mobile Lower Limb Rehabilitation Exoskeletons.
    Prasad R; El-Rich M; Awad MI; Hussain I; Jelinek HF; Huzaifa U; Khalaf K
    Front Bioeng Biotechnol; 2022; 10():920462. PubMed ID: 35795162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential.
    Chen T; Casas R; Lum PS
    IEEE Trans Robot; 2019 Dec; 35(6):1464-1474. PubMed ID: 31929766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actor-critic learning based coordinated control for a dual-arm robot with prescribed performance and unknown backlash-like hysteresis.
    Ouyang Y; Sun C; Dong L
    ISA Trans; 2022 Jul; 126():1-13. PubMed ID: 34446282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust control of a cable-driven rehabilitation robot for lower and upper limbs.
    Seyfi NS; Keymasi Khalaji A
    ISA Trans; 2022 Jun; 125():268-289. PubMed ID: 34294462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.