These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 36296046)
1. Controllable Formation and Real-Time Characterization of Single Microdroplets Using Optical Tweezers. Li S; Zhang H; Li W; Zhang Y; Gao X; Liu H; Li N; Hu H Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296046 [TBL] [Abstract][Full Text] [Related]
2. Methyl halide transferase-based gas reporters for quantification of filamentous bacteria in microdroplet emulsions. Song X; Kong SJ; Seo S; Prabhakar RG; Shamoo Y Appl Environ Microbiol; 2023 Sep; 89(9):e0076423. PubMed ID: 37699129 [TBL] [Abstract][Full Text] [Related]
3. Monitoring Early-Stage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS. Salmon AR; Esteban R; Taylor RW; Hugall JT; Smith CA; Whyte G; Scherman OA; Aizpurua J; Abell C; Baumberg JJ Small; 2016 Apr; 12(13):1788-96. PubMed ID: 26865562 [TBL] [Abstract][Full Text] [Related]
4. Microchannels Formed Using Metal Microdroplets. Zhang D; Jing C; Guo W; Xiao Y; Luo J; Qi L Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893359 [TBL] [Abstract][Full Text] [Related]
5. Investigation of a phase transition in a single optically levitated microdroplet by Raman-Mie scattering. Trunk M; Lübben JF; Popp J; Schrader B; Kiefer W Appl Opt; 1997 May; 36(15):3305-9. PubMed ID: 18253341 [TBL] [Abstract][Full Text] [Related]
7. Microanalysis of Single Poly( Ushiro K; Shoji T; Matsumoto M; Asoh TA; Horibe H; Katsumoto Y; Tsuboi Y J Phys Chem B; 2020 Sep; 124(38):8454-8463. PubMed ID: 32900197 [TBL] [Abstract][Full Text] [Related]
8. Imaging of pH distribution inside individual microdroplet by stimulated Raman microscopy. Gong K; Ao J; Li K; Liu L; Liu Y; Xu G; Wang T; Cheng H; Wang Z; Zhang X; Wei H; George C; Mellouki A; Herrmann H; Wang L; Chen J; Ji M; Zhang L; Francisco JS Proc Natl Acad Sci U S A; 2023 May; 120(20):e2219588120. PubMed ID: 37155894 [TBL] [Abstract][Full Text] [Related]
9. Efficient Surfactant-Mediated Photovoltaic Manipulation of fL-Scale Aqueous Microdroplets for Diverse Optofluidic Applications on LiNbO Gao Z; Yan J; Shi L; Liu X; Wang M; Li C; Huai Z; Wang C; Wang X; Zhang L; Yan W Adv Mater; 2023 Dec; 35(49):e2304081. PubMed ID: 37526054 [TBL] [Abstract][Full Text] [Related]
10. Versatile, facile and low-cost single-cell isolation, culture and sequencing by optical tweezer-assisted pool-screening. Xu T; Li Y; Han X; Kan L; Ren J; Sun L; Diao Z; Ji Y; Zhu P; Xu J; Ma B Lab Chip; 2022 Dec; 23(1):125-135. PubMed ID: 36477690 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Dissolution of Liquid Microdroplets in the Extensional Creeping Flow of a Hydrodynamic Trap. Mustafa A; Erten A; Ayaz RM; Kayıllıoğlu O; Eser A; Eryürek M; Irfan M; Muradoglu M; Tanyeri M; Kiraz A Langmuir; 2016 Sep; 32(37):9460-7. PubMed ID: 27571341 [TBL] [Abstract][Full Text] [Related]
12. Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets. Gómez Castaño JA; Boussekey L; Verwaerde JP; Moreau M; Tobón YA Molecules; 2019 Sep; 24(18):. PubMed ID: 31547361 [TBL] [Abstract][Full Text] [Related]
13. Capillary-based Centrifugal Microfluidic Device for Size-controllable Formation of Monodisperse Microdroplets. Morita M; Yamashita H; Hayakawa M; Onoe H; Takinoue M J Vis Exp; 2016 Feb; (108):53860. PubMed ID: 26967046 [TBL] [Abstract][Full Text] [Related]
14. Kinetic Switching of the Concentration/Separation Behavior of Microdroplets. Fukuyama M; Hibara A; Yoshida Y; Maeda K Anal Chem; 2017 Sep; 89(17):9279-9283. PubMed ID: 28745495 [TBL] [Abstract][Full Text] [Related]
15. Quantitative characterization of individual microdroplets using surface-enhanced resonance Raman scattering spectroscopy. Syme CD; Martino C; Yusvana R; Sirimuthu NM; Cooper JM Anal Chem; 2012 Feb; 84(3):1491-5. PubMed ID: 22243139 [TBL] [Abstract][Full Text] [Related]
16. Large-area manipulation of microdroplets by holographic optical tweezers based on a hybrid diffractive system. Ogura Y; Kazayama Y; Nishimura T; Tanida J Appl Opt; 2011 Dec; 50(34):H36-41. PubMed ID: 22193024 [TBL] [Abstract][Full Text] [Related]
18. Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet. Duan R; Li Y; Shi B; Li H; Yang J Talanta; 2020 Mar; 209():120513. PubMed ID: 31892099 [TBL] [Abstract][Full Text] [Related]
19. Arrays of individually controllable optical tweezers based on 3D-printed microlens arrays. Schäffner D; Preuschoff T; Ristok S; Brozio L; Schlosser M; Giessen H; Birkl G Opt Express; 2020 Mar; 28(6):8640-8645. PubMed ID: 32225484 [TBL] [Abstract][Full Text] [Related]