These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 36296070)

  • 1. A Highly Accurate Method for Measuring Response Time of MEMS Thermopiles.
    Xiang Z; Shi M; Zhou N; Zhang C; Ding X; Ni Y; Chen D; Mao H
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Responsive MEMS Sensing Chip for Differential Thermal Analysis (DTA).
    Zhang H; Jia H; Feng W; Ni Z; Xu P; Li X
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneously controlling heat conduction and infrared absorption with a textured dielectric film to enhance the performance of thermopiles.
    He Y; Wang Y; Li T
    Microsyst Nanoeng; 2021; 7():36. PubMed ID: 34567750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1ppm-detectable hydrogen gas sensors by using highly sensitive P+/N+ single-crystalline silicon thermopiles.
    Zhang H; Jia H; Ni Z; Li M; Chen Y; Xu P; Li X
    Microsyst Nanoeng; 2023; 9():29. PubMed ID: 36960346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Integrated Thermopile-Based Sensor with a Chopper-Stabilized Interface Circuit for Presence Detection.
    Moisello E; Vaiana M; Castagna ME; Bruno G; Malcovati P; Bonizzoni E
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of the Measurement Time of Thermopiles Using Sigma-Delta Control.
    Domínguez-Pumar M; Pérez E; Ramón M; Jiménez V; Bermejo S; Pons-Nin J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31323801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Surface Protective Coating to Enhance Environment-Withstanding Property of the MEMS 2D Wind Direction and Wind Speed Sensor.
    Shin KS; Lee DS; Song SW; Jung JP
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28925942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Thermopile Device with Sub-Wavelength Hole Arrays by CMOS-MEMS Technology.
    Chen CF; Shen CH; Yeh YY
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Infrared Absorbance of the CMOS Compatible Thermopile by the Subwavelength Rectangular-Hole Arrays.
    Chen CF; Shen CH; Yeh YY
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Infrared Temperature Measurement with Dual Mode Modulation of Thermopile Sensor.
    Shen CH; Chen SJ; Guo YT
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30650671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on a High Performance MEMS Infrared Thermopile Detector.
    Bao A; Lei C; Mao H; Li R; Guan Y
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31847124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monomaterial Nernst Thermopile with Hermaphroditic Legs.
    Li X; Zhu Z; Behnia K
    Adv Mater; 2021 May; 33(20):e2100751. PubMed ID: 33844874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-sized light-emitting diode integrated with a thermopile for on-chip temperature and power monitoring.
    Yan J; Fang L; Yan Y; Sun Z; Shi F; Shi Z; Wang Y
    Opt Lett; 2024 Feb; 49(3):630-633. PubMed ID: 38300076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring.
    Liu Z; Zhang C; Ding X; Ni Y; Zhou N; Wang Y; Mao H
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-film thermopiles for use with rabbit right ventricular papillary muscles.
    Mulieri LA; Luhr G; Trefry J; Alpert NR
    Am J Physiol; 1977 Nov; 233(5):C146-56. PubMed ID: 920795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SrTiO
    Guo X; Lu X; Jiang P; Bao X
    Adv Mater; 2022 Sep; 34(35):e2204355. PubMed ID: 35817476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes.
    Mele L; Konings S; Dona P; Evertz F; Mitterbauer C; Faber P; Schampers R; Jinschek JR
    Microsc Res Tech; 2016 Apr; 79(4):239-50. PubMed ID: 26818213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chip-Based MEMS Platform for Thermogravimetric/Differential Thermal Analysis (TG/DTA) Joint Characterization of Materials.
    Zhou W; Li X; Yao F; Zhang H; Sun K; Chen F; Xu P; Li X
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model of heat flow in a thermopile for measuring muscle heat production: implications for design and signal analysis.
    Barclay CJ
    Physiol Meas; 2015 Sep; 36(9):1853-72. PubMed ID: 26234299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on a CMOS-MEMS Infrared Sensor with Reduced Graphene Oxide.
    Chen SJ; Chen B
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.