These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36296071)

  • 1. Editorial for the Special Issue on Micro/Nanofluidic and Lab-on-a-Chip Devices for Biomedical Applications.
    Carvalho VM; Teixeira S; Ribeiro JE
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications and theory of electrokinetic enrichment in micro-nanofluidic chips.
    Chen X; Zhang S; Zhang L; Yao Z; Chen X; Zheng Y; Liu Y
    Biomed Microdevices; 2017 Sep; 19(3):19. PubMed ID: 28364179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Editorial for the Special Issue on Lab-on-PCB Devices.
    Perdigones F
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconventional micro-/nanofabrication technologies for hybrid-scale lab-on-a-chip.
    Ha D; Hong J; Shin H; Kim T
    Lab Chip; 2016 Nov; 16(22):4296-4312. PubMed ID: 27761529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices.
    Wang C; Wang Y; Zhou Y; Wu ZQ; Xia XH
    Anal Bioanal Chem; 2019 Jul; 411(18):4007-4016. PubMed ID: 30972474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editorial for the Special Issue on Micro and Nano Devices for Cell Analysis.
    Yamamura S
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polycarbonate Nanofluidic Chip Fabrication Technique by Hot Embossing and Thermal Bonding.
    Yin Z; Zou H; Sun L
    J Nanosci Nanotechnol; 2018 Apr; 18(4):2530-2535. PubMed ID: 29442923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editorial for the Special Issue on Micro/Nanofluidic Devices for Single Cell Analysis, Volume II.
    Santra TS; Tseng FG
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Special Issue "Micro and Nano Flows 2016 (MNF2016) - Biomedical Stream".
    Dubini G; König CS; Redaelli A
    Med Eng Phys; 2017 Oct; 48():1-2. PubMed ID: 28935294
    [No Abstract]   [Full Text] [Related]  

  • 12. Using Laser Interference Lithography in the Fabrication of a Simplified Micro- and Nanofluidic Device for Label-free Detection.
    Ajiri T; Kasa H; Maeki M; Ishida A; Tani H; Nishii J; Tokeshi M
    Anal Sci; 2017; 33(10):1197-1199. PubMed ID: 28993597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alignment System and Application for a Micro/Nanofluidic Chip.
    Wang J; Han LL; Sun YM; Su TY
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30477232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a micro/nanofluidic chip platform for diagnosis of central nervous system infections: a multi-center prospective study.
    Zheng G; Zhang Y; Zhang L; Qian L; Cai Y; Lv H; Kang X; Guo D; Wang X; Huang J; Gao Z; Guan X; Zhang G
    Sci Rep; 2020 Jan; 10(1):1568. PubMed ID: 32005939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotechnology-assisted microfluidic systems: from bench to bedside.
    Rabiee N; Ahmadi S; Fatahi Y; Rabiee M; Bagherzadeh M; Dinarvand R; Bagheri B; Zarrintaj P; Saeb MR; Webster TJ
    Nanomedicine (Lond); 2021 Feb; 16(3):237-258. PubMed ID: 33501839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased Flexibility in Lab-on-Chip Design with a Polymer Patchwork Approach.
    Pezzuoli D; Angeli E; Repetto D; Guida P; Firpo G; Repetto L
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31775220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review.
    Gorjikhah F; Davaran S; Salehi R; Bakhtiari M; Hasanzadeh A; Panahi Y; Emamverdy M; Akbarzadeh A
    Artif Cells Nanomed Biotechnol; 2016 Nov; 44(7):1609-14. PubMed ID: 26758969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules.
    Wang C; Nam SW; Cotte JM; Jahnes CV; Colgan EG; Bruce RL; Brink M; Lofaro MF; Patel JV; Gignac LM; Joseph EA; Rao SP; Stolovitzky G; Polonsky S; Lin Q
    Nat Commun; 2017 Jan; 8():14243. PubMed ID: 28112157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals, biomedical applications and future potential of micro-scale cavitation-a review.
    Seyedmirzaei Sarraf S; Rokhsar Talabazar F; Namli I; Maleki M; Sheibani Aghdam A; Gharib G; Grishenkov D; Ghorbani M; Koşar A
    Lab Chip; 2022 Jun; 22(12):2237-2258. PubMed ID: 35531747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper based micro/nanofluidics devices for biomedical applications.
    Resmi PE; Suneesh PV; Ramachandran T; Babu TGS
    Prog Mol Biol Transl Sci; 2022; 186(1):159-190. PubMed ID: 35033283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.