These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 36296119)
1. Numerical and Experimental Analysis of Shear Stress Influence on Cellular Viability in Serpentine Vascular Channels. Deshmukh K; Gupta S; Mitra K; Bit A Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296119 [TBL] [Abstract][Full Text] [Related]
2. Influence of Non-Newtonian Viscosity on Flow Structures and Wall Deformation in Compliant Serpentine Microchannels: A Numerical Study. Deshmukh K; Mitra K; Bit A Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763824 [TBL] [Abstract][Full Text] [Related]
3. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
5. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Wu T; Gao YY; Su J; Tang XN; Chen Q; Ma LW; Zhang JJ; Wu JM; Wang SX Climacteric; 2022 Apr; 25(2):170-178. PubMed ID: 33993814 [TBL] [Abstract][Full Text] [Related]
7. 3D Bioprinting of Methylcellulose/Gelatin-Methacryloyl (MC/GelMA) Bioink with High Shape Integrity. Rastin H; Ormsby RT; Atkins GJ; Losic D ACS Appl Bio Mater; 2020 Mar; 3(3):1815-1826. PubMed ID: 35021671 [TBL] [Abstract][Full Text] [Related]
8. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
9. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
10. Engineering a 3D human intracranial aneurysm model using liquid-assisted injection molding and tuned hydrogels. Yong KW; Janmaleki M; Pachenari M; Mitha AP; Sanati-Nezhad A; Sen A Acta Biomater; 2021 Dec; 136():266-278. PubMed ID: 34547516 [TBL] [Abstract][Full Text] [Related]
11. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370 [TBL] [Abstract][Full Text] [Related]
13. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
14. Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation. Seddiqi H; Saatchi A; Amoabediny G; Helder MN; Abbasi Ravasjani S; Safari Hajat Aghaei M; Jin J; Zandieh-Doulabi B; Klein-Nulend J Comput Biol Med; 2020 Sep; 124():103826. PubMed ID: 32798924 [TBL] [Abstract][Full Text] [Related]
15. Bioprinting-Associated Shear Stress and Hydrostatic Pressure Affect the Angiogenic Potential of Human Umbilical Vein Endothelial Cells. Köpf M; Nasehi R; Kreimendahl F; Jockenhoevel S; Fischer H Int J Bioprint; 2022; 8(4):606. PubMed ID: 36404792 [TBL] [Abstract][Full Text] [Related]
16. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate. Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592 [TBL] [Abstract][Full Text] [Related]
17. Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering. Bhattacharyya A; Janarthanan G; Kim T; Taheri S; Shin J; Kim J; Bae HC; Han HS; Noh I Biomater Res; 2022 Oct; 26(1):54. PubMed ID: 36209133 [TBL] [Abstract][Full Text] [Related]
18. Low-intensity pulsed ultrasound promotes cell viability and inhibits apoptosis of H9C2 cardiomyocytes in 3D bioprinting scaffolds via PI3K-Akt and ERK1/2 pathways. Hu Y; Jia Y; Wang H; Cao Q; Yang Y; Zhou Y; Tan T; Huang X; Zhou Q J Biomater Appl; 2022 Sep; 37(3):402-414. PubMed ID: 35574901 [TBL] [Abstract][Full Text] [Related]
19. Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Xu L; Varkey M; Jorgensen A; Ju J; Jin Q; Park JH; Fu Y; Zhang G; Ke D; Zhao W; Hou R; Atala A Biofabrication; 2020 Jul; 12(4):045012. PubMed ID: 32619999 [TBL] [Abstract][Full Text] [Related]
20. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]