These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36296226)

  • 1. Response of Carbon Emissions and the Bacterial Community to Freeze-Thaw Cycles in a Permafrost-Affected Forest-Wetland Ecotone in Northeast China.
    Liu C; Dong X; Wu X; Ma D; Wu Y; Man H; Li M; Zang S
    Microorganisms; 2022 Sep; 10(10):. PubMed ID: 36296226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of nitrous oxide fluxes to autumn freeze-thaw cycles in permafrost peatlands of the Da Xing'an Mountains, Northeast China.
    Song L; Zang S; Lin L; Lu B; Sun C; Jiao Y; Wang H
    Environ Sci Pollut Res Int; 2022 May; 29(21):31700-31712. PubMed ID: 35013975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different responses of CO
    Yang S; He Z; Chen L
    Sci Total Environ; 2023 Mar; 863():160886. PubMed ID: 36528098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China.
    Ren J; Song C; Hou A; Song Y; Zhu X; Cagle GA
    Sci Total Environ; 2018 Jun; 625():782-791. PubMed ID: 29306166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of freeze-thaw cycles on soil greenhouse gas emissions: A systematic review.
    Liu Y; Wang X; Wen Y; Cai H; Song X; Zhang Z
    Environ Res; 2024 May; 248():118386. PubMed ID: 38316387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warming promotes soil CO
    Lu B; Song L; Zang S; Wang H
    Sci Total Environ; 2022 Jul; 829():154725. PubMed ID: 35331769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China.
    Song C; Wang X; Miao Y; Wang J; Mao R; Song Y
    Sci Total Environ; 2014 Jul; 487():604-10. PubMed ID: 24135025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emissions of CO
    Wu X; Zang S; Ma D; Ren J; Chen Q; Dong X
    Int J Environ Res Public Health; 2019 Aug; 16(16):. PubMed ID: 31434321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of freeze-thaw cycles on methanogenic hydrocarbon degradation: Experiment and modeling.
    Ramezanzadeh M; Slowinski S; Rezanezhad F; Murr K; Lam C; Smeaton C; Alibert C; Vandergriendt M; Van Cappellen P
    Chemosphere; 2023 Jun; 325():138405. PubMed ID: 36931401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greenhouse gas fluxes response to autumn freeze-thaw period in continuous permafrost region of Daxing'an Mountains, Northeast China.
    Gao D; Wang W; Gao W; Zeng Q; Liang H
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):63753-63767. PubMed ID: 35461419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linkages between the molecular composition of dissolved organic matter and soil microbial community in a boreal forest during freeze-thaw cycles.
    Yang Y; Cheng S; Fang H; Guo Y; Li Y; Zhou Y; Shi F; Vancampenhout K
    Front Microbiol; 2022; 13():1012512. PubMed ID: 36699583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale evidence for microbial response and associated carbon release after permafrost thaw.
    Chen Y; Liu F; Kang L; Zhang D; Kou D; Mao C; Qin S; Zhang Q; Yang Y
    Glob Chang Biol; 2021 Jul; 27(14):3218-3229. PubMed ID: 33336478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw.
    Voigt C; Marushchak ME; Mastepanov M; Lamprecht RE; Christensen TR; Dorodnikov M; Jackowicz-Korczyński M; Lindgren A; Lohila A; Nykänen H; Oinonen M; Oksanen T; Palonen V; Treat CC; Martikainen PJ; Biasi C
    Glob Chang Biol; 2019 May; 25(5):1746-1764. PubMed ID: 30681758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of greenhouse gas emissions from farmland soils based on a structural equation model: Regulation mechanism of biochar.
    Yang X; Liu D; Fu Q; Li T; Hou R; Li Q; Li M; Meng F
    Environ Res; 2022 Apr; 206():112303. PubMed ID: 34756913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil CO
    Song Y; Cheng X; Song C; Li M; Gao S; Liu Z; Gao J; Wang X
    Front Microbiol; 2022; 13():1093487. PubMed ID: 36583043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.
    Treat CC; Wollheim WM; Varner RK; Grandy AS; Talbot J; Frolking S
    Glob Chang Biol; 2014 Aug; 20(8):2674-86. PubMed ID: 24616169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands.
    Kuhn M; Lundin EJ; Giesler R; Johansson M; Karlsson J
    Sci Rep; 2018 Jun; 8(1):9535. PubMed ID: 29934641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of autumn diurnal freeze-thaw cycles on soil bacteria and greenhouse gases in the permafrost regions.
    Lv Z; Gu Y; Chen S; Chen J; Jia Y
    Front Microbiol; 2022; 13():1056953. PubMed ID: 36532487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.
    Allan J; Ronholm J; Mykytczuk NC; Greer CW; Onstott TC; Whyte LG
    Environ Microbiol Rep; 2014 Apr; 6(2):136-44. PubMed ID: 24596286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.