These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 3629625)
1. Binding of formaldehyde to human and rat nasal mucus and bovine serum albumin. Bogdanffy MS; Morgan PH; Starr TB; Morgan KT Toxicol Lett; 1987 Sep; 38(1-2):145-54. PubMed ID: 3629625 [TBL] [Abstract][Full Text] [Related]
2. Isotope effects and their implications for the covalent binding of inhaled [3H]- and [14C]formaldehyde in the rat nasal mucosa. Heck Hd'A ; Casanova M Toxicol Appl Pharmacol; 1987 Jun; 89(1):122-34. PubMed ID: 3590184 [TBL] [Abstract][Full Text] [Related]
3. Further studies of the metabolic incorporation and covalent binding of inhaled [3H]- and [14C]formaldehyde in Fischer-344 rats: effects of glutathione depletion. Casanova M; Heck Hd'A Toxicol Appl Pharmacol; 1987 Jun; 89(1):105-21. PubMed ID: 2438809 [TBL] [Abstract][Full Text] [Related]
4. Distribution, progression, and recovery of acute formaldehyde-induced inhibition of nasal mucociliary function in F-344 rats. Morgan KT; Gross EA; Patterson DL Toxicol Appl Pharmacol; 1986 Dec; 86(3):448-56. PubMed ID: 3787637 [TBL] [Abstract][Full Text] [Related]
5. Reactions of hydrated formaldehyde in nasal mucus. Priha E; Liesivuori J; Santa H; Laatikainen R Chemosphere; 1996 Mar; 32(6):1077-82. PubMed ID: 8920592 [TBL] [Abstract][Full Text] [Related]
6. Effects of endogenous formaldehyde in nasal tissues on inhaled formaldehyde dosimetry predictions in the rat, monkey, and human nasal passages. Schroeter JD; Campbell J; Kimbell JS; Conolly RB; Clewell HJ; Andersen ME Toxicol Sci; 2014 Apr; 138(2):412-24. PubMed ID: 24385418 [TBL] [Abstract][Full Text] [Related]
7. Relative roles of convection and chemical reaction for the disposition of formaldehyde and ozone in nasal mucus. Schlosser PM Inhal Toxicol; 1999 Oct; 11(10):967-80. PubMed ID: 10509029 [TBL] [Abstract][Full Text] [Related]
8. Comparison of inhaled formaldehyde dosimetry predictions with DNA-protein cross-link measurements in the rat nasal passages. Hubal EA; Schlosser PM; Conolly RB; Kimbell JS Toxicol Appl Pharmacol; 1997 Mar; 143(1):47-55. PubMed ID: 9073591 [TBL] [Abstract][Full Text] [Related]
9. Covalent binding of inhaled formaldehyde to DNA in the nasal mucosa of Fischer 344 rats: analysis of formaldehyde and DNA by high-performance liquid chromatography and provisional pharmacokinetic interpretation. Casanova M; Deyo DF; Heck HD Fundam Appl Toxicol; 1989 Apr; 12(3):397-417. PubMed ID: 2731656 [TBL] [Abstract][Full Text] [Related]
10. Covalent binding of inhaled formaldehyde to DNA in the respiratory tract of rhesus monkeys: pharmacokinetics, rat-to-monkey interspecies scaling, and extrapolation to man. Casanova M; Morgan KT; Steinhagen WH; Everitt JI; Popp JA; Heck HD Fundam Appl Toxicol; 1991 Aug; 17(2):409-28. PubMed ID: 1765228 [TBL] [Abstract][Full Text] [Related]
11. The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity. Heck Hd; Casanova M Regul Toxicol Pharmacol; 2004 Oct; 40(2):92-106. PubMed ID: 15450713 [TBL] [Abstract][Full Text] [Related]
12. Dosimetry modeling of inhaled formaldehyde: binning nasal flux predictions for quantitative risk assessment. Kimbell JS; Overton JH; Subramaniam RP; Schlosser PM; Morgan KT; Conolly RB; Miller FJ Toxicol Sci; 2001 Nov; 64(1):111-21. PubMed ID: 11606807 [TBL] [Abstract][Full Text] [Related]
13. Formaldehyde production promoted by rat nasal cytochrome P-450-dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates. Dahl AR; Hadley WM Toxicol Appl Pharmacol; 1983 Feb; 67(2):200-5. PubMed ID: 6188239 [TBL] [Abstract][Full Text] [Related]
14. Responses of the nasal mucociliary apparatus of F-344 rats to formaldehyde gas. Morgan KT; Patterson DL; Gross EA Toxicol Appl Pharmacol; 1986 Jan; 82(1):1-13. PubMed ID: 3945936 [TBL] [Abstract][Full Text] [Related]
15. Differentiation between metabolic incorporation and covalent binding in the labeling of macromolecules in the rat nasal mucosa and bone marrow by inhaled [14C]- and [3H]formaldehyde. Casanova-Schmitz M; Starr TB; Heck HD Toxicol Appl Pharmacol; 1984 Oct; 76(1):26-44. PubMed ID: 6207627 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a membrane-associated receptor from rat sinusoidal liver cells that binds formaldehyde-treated serum albumin. Horiuchi S; Takata K; Morino Y J Biol Chem; 1985 Jan; 260(1):475-81. PubMed ID: 2981213 [TBL] [Abstract][Full Text] [Related]
17. The nasal mucociliary apparatus. Correlation of structure and function in the rat. Morgan KT; Jiang XZ; Patterson DL; Gross EA Am Rev Respir Dis; 1984 Aug; 130(2):275-81. PubMed ID: 6465681 [TBL] [Abstract][Full Text] [Related]
18. Oxidation of formaldehyde and acetaldehyde by NAD+-dependent dehydrogenases in rat nasal mucosal homogenates. Casanova-Schmitz M; David RM; Heck HD Biochem Pharmacol; 1984 Apr; 33(7):1137-42. PubMed ID: 6477684 [TBL] [Abstract][Full Text] [Related]
19. Simulation modeling of the tissue disposition of formaldehyde to predict nasal DNA-protein cross-links in Fischer 344 rats, rhesus monkeys, and humans. Conolly RB; Lilly PD; Kimbell JS Environ Health Perspect; 2000 Oct; 108 Suppl 5():919-24. PubMed ID: 11036001 [TBL] [Abstract][Full Text] [Related]
20. Depletion of nasal mucosal glutathione by acrolein and enhancement of formaldehyde-induced DNA-protein cross-linking by simultaneous exposure to acrolein. Lam CW; Casanova M; Heck HD Arch Toxicol; 1985 Dec; 58(2):67-71. PubMed ID: 4091658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]