These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36296395)

  • 1. Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries.
    Danchovski Y; Rasheev H; Stoyanova R; Tadjer A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Hyperactive MOF for Li
    Rasheev H; Seremak A; Stoyanova R; Tadjer A
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material.
    Casado N; Mantione D; Shanmukaraj D; Mecerreyes D
    ChemSusChem; 2020 May; 13(9):2464-2470. PubMed ID: 31643146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dibenzo[a,e]Cyclooctatetraene-Functionalized Polymers as Potential Battery Electrode Materials.
    Desmaizieres G; Speer ME; Thiede I; Gaiser P; Perner V; Kolek M; Bieker P; Winter M; Esser B
    Macromol Rapid Commun; 2021 Sep; 42(18):e2000725. PubMed ID: 33660343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Rate Organic Cathode Constructed by Iron-Hexaazatrinaphthalene Tricarboxylic Acid Coordination Polymer for Li-Ion Batteries.
    Wang Y; Qiao Z; Liu K; Yu L; Lv Y; Shi L; Zhao Y; Cao D; Wang Z; Wang S; Yuan S
    Adv Sci (Weinh); 2022 Dec; 9(36):e2205069. PubMed ID: 36354197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilizing Quinone-Fused Aza-Phenazine into π-d Conjugated Coordination Polymers with Multiple-Active Sites for Sodium-Ion Batteries.
    Cheng L; Yu J; Chen L; Chu J; Wang J; Wang HG; Feng D; Cui F; Zhu G
    Small; 2023 Aug; 19(35):e2301578. PubMed ID: 37105762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cobalt-Free Li(Li
    Cheng X; Wei H; Hao W; Li H; Si H; An S; Zhu W; Jia G; Qiu X
    ChemSusChem; 2019 Mar; 12(6):1162-1168. PubMed ID: 30600937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A redox-active metal-organic compound for lithium/sodium-based dual-ion batteries.
    Wang H; Wu Q; Wang Y; Lv X; Wang HG
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1024-1030. PubMed ID: 34487925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monocrystalline Coordination Polymer with Multiple Redox Centers as a High-Performance Cathode for Lithium-Ion Batteries.
    Luo Y; Liu J; Zhang L
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202209458. PubMed ID: 35899824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.
    Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T
    J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzoquinone- and Naphthoquinone-Bearing Polymers Synthesized by Ring-Opening Metathesis Polymerization as Cathode Materials for Lithium-Ion Batteries.
    Shi Y; Sun P; Yang J; Xu Y
    ChemSusChem; 2020 Jan; 13(2):334-340. PubMed ID: 31742909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance.
    Fu C; Li G; Luo D; Li Q; Fan J; Li L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of lead quinone cathode materials for Li-ion batteries.
    Zhou X; Khetan A; Zheng J; Huijben M; Janssen RAJ; Er S
    Digit Discov; 2023 Aug; 2(4):1016-1025. PubMed ID: 38013813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the 4 V-class n-type organic lithium-ion positive electrode materials: the case of conjugated triflimides and cyanamides.
    Guo X; Apostol P; Zhou X; Wang J; Lin X; Rambabu D; Du M; Er S; Vlad A
    Energy Environ Sci; 2024 Jan; 17(1):173-182. PubMed ID: 38173560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Reinforced Inductive Effect of Symmetric Bipolar Organic Molecule for High-Performance Rechargeable Batteries.
    Son G; Ri V; Shin D; Jung Y; Park CB; Kim C
    Adv Sci (Weinh); 2023 Nov; 10(31):e2301993. PubMed ID: 37750249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Electron Redox Enabled Dithiocarboxylate Electrode for Superior Lithium Storage Performance.
    Wang J; Zhao H; Xu L; Yang Y; He G; Du Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35469-35476. PubMed ID: 30252431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.