These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36296443)
1. Direct Hydroxylation of Benzene with Hydrogen Peroxide Using Fe Complexes Encapsulated into Mesoporous Y-Type Zeolite. Yamaguchi S; Ishida Y; Koga H; Yahiro H Molecules; 2022 Oct; 27(20):. PubMed ID: 36296443 [TBL] [Abstract][Full Text] [Related]
2. The beneficial role of nano-sized Fe Tammaro O; Morante N; Marocco A; Fontana M; Castellino M; Barrera G; Allia P; Tiberto P; Arletti R; Fantini R; Vaiano V; Esposito S; Sannino D; Pansini M Chemosphere; 2023 Dec; 345():140400. PubMed ID: 37863212 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites. Snyder BER; Bols ML; Rhoda HM; Vanelderen P; Böttger LH; Braun A; Yan JJ; Hadt RG; Babicz JT; Hu MY; Zhao J; Alp EE; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12124-12129. PubMed ID: 30429333 [TBL] [Abstract][Full Text] [Related]
4. Catalytic Hydroxylation of Benzene to Phenol by Dioxygen with an NADH Analogue. Hirose K; Ohkubo K; Fukuzumi S Chemistry; 2016 Aug; 22(36):12904-9. PubMed ID: 27465104 [TBL] [Abstract][Full Text] [Related]
5. Developing Fe/zeolite catalysts for efficient catalytic wet peroxidation of three isomeric cresols. Chen L; Sun W; Wei H; Yang X; Sun C; Yu L Environ Sci Pollut Res Int; 2021 Aug; 28(31):42622-42636. PubMed ID: 33818723 [TBL] [Abstract][Full Text] [Related]
6. Fe-ZSM-5 zeolite catalyst for heterogeneous Fenton oxidation of 1,4-dioxane: effect of Si/Al ratios and contributions of reactive oxygen species. Tian K; Pan J; Liu Y; Wang P; Zhong M; Dong Y; Wang M Environ Sci Pollut Res Int; 2024 Mar; 31(13):19738-19752. PubMed ID: 38363503 [TBL] [Abstract][Full Text] [Related]
7. Adsorption and catalytic oxidation of organic pollutants using Fe-zeolite. Russo AV; Andrade CV; De Angelis LE; Jacobo SE Water Sci Technol; 2018 Feb; 77(3-4):939-947. PubMed ID: 29488957 [TBL] [Abstract][Full Text] [Related]
8. The catalytic and photocatalytic oxidation of organic substances using heterogeneous Fenton-type catalysts. Kuznetsova EV; Savinov EN; Vostrikova LA; Echevskii GV Water Sci Technol; 2004; 49(4):109-15. PubMed ID: 15077957 [TBL] [Abstract][Full Text] [Related]
9. Iron(III) complexes of multidentate pyridinyl ligands: synthesis, characterization and catalysis of the direct hydroxylation of benzene. Xu B; Zhong W; Wei Z; Wang H; Liu J; Wu L; Feng Y; Liu X Dalton Trans; 2014 Nov; 43(41):15337-45. PubMed ID: 25187309 [TBL] [Abstract][Full Text] [Related]
10. Direct hydroxylation of benzene to phenol using hydrogen peroxide catalyzed by nickel complexes supported by pyridylalkylamine ligands. Morimoto Y; Bunno S; Fujieda N; Sugimoto H; Itoh S J Am Chem Soc; 2015 May; 137(18):5867-70. PubMed ID: 25938800 [TBL] [Abstract][Full Text] [Related]
11. Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol. Meng L; Zhu X; Hensen EJM ACS Catal; 2017 Apr; 7(4):2709-2719. PubMed ID: 28413693 [TBL] [Abstract][Full Text] [Related]
12. Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique. Zhang Y; Shang J; Song Y; Rong C; Wang Y; Huang W; Yu K Water Sci Technol; 2017 Feb; 75(3-4):659-669. PubMed ID: 28192360 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of coal fly ash zeolite for the catalytic wet peroxide oxidation of Orange II. Ramírez H; Núñez MMG; Bogoya AB; Gomez DFB; Ramos C; di Luca C; Inchaurrondo N; Haure P Environ Sci Pollut Res Int; 2019 Feb; 26(5):4277-4287. PubMed ID: 30291616 [TBL] [Abstract][Full Text] [Related]
14. Transition metal complexes of 4-hydroxy-3-methoxybenzaldehyde embedded in fly ash zeolite as catalysts for phenol hydroxylation. Thavamani SS; Amaladhas TP; AlSalhi MS; Devanesan S; Nicoletti M Chemosphere; 2022 Feb; 289():133167. PubMed ID: 34871616 [TBL] [Abstract][Full Text] [Related]
15. Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst. Kondru AK; Kumar P; Chand S J Hazard Mater; 2009 Jul; 166(1):342-7. PubMed ID: 19135790 [TBL] [Abstract][Full Text] [Related]
16. Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation. Gonzalez-Olmos R; Kopinke FD; Mackenzie K; Georgi A Environ Sci Technol; 2013 Mar; 47(5):2353-60. PubMed ID: 23346998 [TBL] [Abstract][Full Text] [Related]
17. Microwave heating in the hydrogen peroxide oxidation of benzene on zeolite catalysts. Radoiu MT; Calinescu I; Chipurici P; Martin DI J Microw Power Electromagn Energy; 2000; 35(2):86-91. PubMed ID: 10935194 [TBL] [Abstract][Full Text] [Related]
18. Propene poisoning on three typical Fe-zeolites for SCR of NOχ with NH₃: from mechanism study to coating modified architecture. Ma L; Li J; Cheng Y; Lambert CK; Fu L Environ Sci Technol; 2012 Feb; 46(3):1747-54. PubMed ID: 22239740 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst. Valkaj KM; Katovic A; Zrncević S J Hazard Mater; 2007 Jun; 144(3):663-7. PubMed ID: 17416460 [TBL] [Abstract][Full Text] [Related]
20. Photochemically enhanced degradation of phenol using heterogeneous Fenton-type catalysts. He F; Shen XY; Lei LC J Environ Sci (China); 2003 May; 15(3):351-5. PubMed ID: 12938986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]