BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36296443)

  • 1. Direct Hydroxylation of Benzene with Hydrogen Peroxide Using Fe Complexes Encapsulated into Mesoporous Y-Type Zeolite.
    Yamaguchi S; Ishida Y; Koga H; Yahiro H
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The beneficial role of nano-sized Fe
    Tammaro O; Morante N; Marocco A; Fontana M; Castellino M; Barrera G; Allia P; Tiberto P; Arletti R; Fantini R; Vaiano V; Esposito S; Sannino D; Pansini M
    Chemosphere; 2023 Dec; 345():140400. PubMed ID: 37863212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of selective benzene hydroxylation catalyzed by iron-containing zeolites.
    Snyder BER; Bols ML; Rhoda HM; Vanelderen P; Böttger LH; Braun A; Yan JJ; Hadt RG; Babicz JT; Hu MY; Zhao J; Alp EE; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12124-12129. PubMed ID: 30429333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Hydroxylation of Benzene to Phenol by Dioxygen with an NADH Analogue.
    Hirose K; Ohkubo K; Fukuzumi S
    Chemistry; 2016 Aug; 22(36):12904-9. PubMed ID: 27465104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing Fe/zeolite catalysts for efficient catalytic wet peroxidation of three isomeric cresols.
    Chen L; Sun W; Wei H; Yang X; Sun C; Yu L
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42622-42636. PubMed ID: 33818723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe-ZSM-5 zeolite catalyst for heterogeneous Fenton oxidation of 1,4-dioxane: effect of Si/Al ratios and contributions of reactive oxygen species.
    Tian K; Pan J; Liu Y; Wang P; Zhong M; Dong Y; Wang M
    Environ Sci Pollut Res Int; 2024 Mar; 31(13):19738-19752. PubMed ID: 38363503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and catalytic oxidation of organic pollutants using Fe-zeolite.
    Russo AV; Andrade CV; De Angelis LE; Jacobo SE
    Water Sci Technol; 2018 Feb; 77(3-4):939-947. PubMed ID: 29488957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The catalytic and photocatalytic oxidation of organic substances using heterogeneous Fenton-type catalysts.
    Kuznetsova EV; Savinov EN; Vostrikova LA; Echevskii GV
    Water Sci Technol; 2004; 49(4):109-15. PubMed ID: 15077957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron(III) complexes of multidentate pyridinyl ligands: synthesis, characterization and catalysis of the direct hydroxylation of benzene.
    Xu B; Zhong W; Wei Z; Wang H; Liu J; Wu L; Feng Y; Liu X
    Dalton Trans; 2014 Nov; 43(41):15337-45. PubMed ID: 25187309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct hydroxylation of benzene to phenol using hydrogen peroxide catalyzed by nickel complexes supported by pyridylalkylamine ligands.
    Morimoto Y; Bunno S; Fujieda N; Sugimoto H; Itoh S
    J Am Chem Soc; 2015 May; 137(18):5867-70. PubMed ID: 25938800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol.
    Meng L; Zhu X; Hensen EJM
    ACS Catal; 2017 Apr; 7(4):2709-2719. PubMed ID: 28413693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique.
    Zhang Y; Shang J; Song Y; Rong C; Wang Y; Huang W; Yu K
    Water Sci Technol; 2017 Feb; 75(3-4):659-669. PubMed ID: 28192360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of coal fly ash zeolite for the catalytic wet peroxide oxidation of Orange II.
    Ramírez H; Núñez MMG; Bogoya AB; Gomez DFB; Ramos C; di Luca C; Inchaurrondo N; Haure P
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4277-4287. PubMed ID: 30291616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal complexes of 4-hydroxy-3-methoxybenzaldehyde embedded in fly ash zeolite as catalysts for phenol hydroxylation.
    Thavamani SS; Amaladhas TP; AlSalhi MS; Devanesan S; Nicoletti M
    Chemosphere; 2022 Feb; 289():133167. PubMed ID: 34871616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst.
    Kondru AK; Kumar P; Chand S
    J Hazard Mater; 2009 Jul; 166(1):342-7. PubMed ID: 19135790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic Fe-zeolites for removal of MTBE from water by combination of adsorption and oxidation.
    Gonzalez-Olmos R; Kopinke FD; Mackenzie K; Georgi A
    Environ Sci Technol; 2013 Mar; 47(5):2353-60. PubMed ID: 23346998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave heating in the hydrogen peroxide oxidation of benzene on zeolite catalysts.
    Radoiu MT; Calinescu I; Chipurici P; Martin DI
    J Microw Power Electromagn Energy; 2000; 35(2):86-91. PubMed ID: 10935194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propene poisoning on three typical Fe-zeolites for SCR of NOχ with NH₃: from mechanism study to coating modified architecture.
    Ma L; Li J; Cheng Y; Lambert CK; Fu L
    Environ Sci Technol; 2012 Feb; 46(3):1747-54. PubMed ID: 22239740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst.
    Valkaj KM; Katovic A; Zrncević S
    J Hazard Mater; 2007 Jun; 144(3):663-7. PubMed ID: 17416460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemically enhanced degradation of phenol using heterogeneous Fenton-type catalysts.
    He F; Shen XY; Lei LC
    J Environ Sci (China); 2003 May; 15(3):351-5. PubMed ID: 12938986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.