These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Oligodynamic Boons of Daptomycin and Noble Metal Nanoparticles Packaged in an Anti-MRSA Topical Gel Formulation. Chakravarty I; Kundu S Curr Pharm Biotechnol; 2019; 20(9):707-718. PubMed ID: 31223082 [TBL] [Abstract][Full Text] [Related]
3. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Gopinath K; Kumaraguru S; Bhakyaraj K; Mohan S; Venkatesh KS; Esakkirajan M; Kaleeswarran P; Alharbi NS; Kadaikunnan S; Govindarajan M; Benelli G; Arumugam A Microb Pathog; 2016 Dec; 101():1-11. PubMed ID: 27765621 [TBL] [Abstract][Full Text] [Related]
4. Carbohydrate-Coated Gold-Silver Nanoparticles for Efficient Elimination of Multidrug Resistant Bacteria and Kumar S; Majhi RK; Singh A; Mishra M; Tiwari A; Chawla S; Guha P; Satpati B; Mohapatra H; Goswami L; Goswami C ACS Appl Mater Interfaces; 2019 Nov; 11(46):42998-43017. PubMed ID: 31664808 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens. Fakhri A; Tahami S; Naji M J Photochem Photobiol B; 2017 Apr; 169():21-26. PubMed ID: 28254569 [TBL] [Abstract][Full Text] [Related]
6. Thymol-Decorated Gold Nanoparticles for Curing Clinical Infections Caused by Bacteria Resistant to Last-Resort Antibiotics. Huang Z; Zhang X; Yao Z; Han Y; Ye J; Zhang Y; Chen L; Shen M; Zhou T mSphere; 2023 Jun; 8(3):e0054922. PubMed ID: 37017551 [TBL] [Abstract][Full Text] [Related]
7. Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Banerjee M; Sharma S; Chattopadhyay A; Ghosh SS Nanoscale; 2011 Dec; 3(12):5120-5. PubMed ID: 22057130 [TBL] [Abstract][Full Text] [Related]
8. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells. Korshed P; Li L; Liu Z; Wang T PLoS One; 2016; 11(8):e0160078. PubMed ID: 27575485 [TBL] [Abstract][Full Text] [Related]
9. Upshift of the d Band Center toward the Fermi Level for Promoting Silver Ion Release, Bacteria Inactivation, and Wound Healing of Alloy Silver Nanoparticles. Chang Y; Cheng Y; Feng Y; Li K; Jian H; Zhang H ACS Appl Mater Interfaces; 2019 Apr; 11(13):12224-12231. PubMed ID: 30864776 [TBL] [Abstract][Full Text] [Related]
10. Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge. Mandal D; Kumar Dash S; Das B; Chattopadhyay S; Ghosh T; Das D; Roy S Biomed Pharmacother; 2016 Oct; 83():548-558. PubMed ID: 27449536 [TBL] [Abstract][Full Text] [Related]
11. Synergistic antibacterial mechanism of silver-copper bimetallic nanoparticles. Hao Z; Wang M; Cheng L; Si M; Feng Z; Feng Z Front Bioeng Biotechnol; 2023; 11():1337543. PubMed ID: 38260749 [TBL] [Abstract][Full Text] [Related]
12. Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Khan SA; Shahid S; Lee CS Biomolecules; 2020 May; 10(6):. PubMed ID: 32486004 [TBL] [Abstract][Full Text] [Related]
13. Antibacterial activities of transient metals nanoparticles and membranous mechanisms of action. Gabrielyan L; Trchounian A World J Microbiol Biotechnol; 2019 Oct; 35(10):162. PubMed ID: 31612285 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells. Korshed P; Li L; Liu Z; Mironov A; Wang T Int J Nanomedicine; 2018; 13():89-101. PubMed ID: 29317818 [TBL] [Abstract][Full Text] [Related]
15. Nanotechnology as a therapeutic tool to combat microbial resistance. Pelgrift RY; Friedman AJ Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial cellulose paper made with silver-coated gold nanoparticles. Tsai TT; Huang TH; Chang CJ; Yi-Ju Ho N; Tseng YT; Chen CF Sci Rep; 2017 Jun; 7(1):3155. PubMed ID: 28600506 [TBL] [Abstract][Full Text] [Related]
17. Harnessing the potential of bimetallic nanoparticles: Exploring a novel approach to address antimicrobial resistance. Bharti S World J Microbiol Biotechnol; 2024 Feb; 40(3):89. PubMed ID: 38337082 [TBL] [Abstract][Full Text] [Related]
18. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Escárcega-González CE; Garza-Cervantes JA; Vázquez-Rodríguez A; Montelongo-Peralta LZ; Treviño-González MT; Díaz Barriga Castro E; Saucedo-Salazar EM; Chávez Morales RM; Regalado Soto DI; Treviño González FM; Carrazco Rosales JL; Cruz RV; Morones-Ramírez JR Int J Nanomedicine; 2018; 13():2349-2363. PubMed ID: 29713166 [TBL] [Abstract][Full Text] [Related]
19. Catalytic and antimicrobial potential of green synthesized Au and Au@Ag core-shell nanoparticles. Rani P; Varma RS; Singh K; Acevedo R; Singh J Chemosphere; 2023 Mar; 317():137841. PubMed ID: 36642143 [TBL] [Abstract][Full Text] [Related]
20. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Zhao Y; Ye C; Liu W; Chen R; Jiang X Angew Chem Int Ed Engl; 2014 Jul; 53(31):8127-31. PubMed ID: 24828967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]