These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 36296676)
21. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves. Toma A; Makonnen E; Mekonnen Y; Debella A; Addisakwattana S BMC Complement Altern Med; 2014 Jun; 14():180. PubMed ID: 24890563 [TBL] [Abstract][Full Text] [Related]
22. The Antidiabetic Potential of Black Mulberry Extract-Enriched Pasta through Inhibition of Enzymes and Glycemic Index. Yazdankhah S; Hojjati M; Azizi MH Plant Foods Hum Nutr; 2019 Mar; 74(1):149-155. PubMed ID: 30632080 [TBL] [Abstract][Full Text] [Related]
23. Can Extracts from the Leaves and Fruits of the Krzemińska B; Dybowski MP; Klimek K; Typek R; Miazga-Karska M; Ginalska G; Dos Santos Szewczyk K Molecules; 2022 May; 27(9):. PubMed ID: 35566257 [TBL] [Abstract][Full Text] [Related]
24. The involvement of phenolic-rich extracts from Galician autochthonous extra-virgin olive oils against the α-glucosidase and α-amylase inhibition. Figueiredo-González M; Reboredo-Rodríguez P; González-Barreiro C; Carrasco-Pancorbo A; Cancho-Grande B; Simal-Gándara J Food Res Int; 2019 Feb; 116():447-454. PubMed ID: 30716967 [TBL] [Abstract][Full Text] [Related]
25. In vitro antioxidant and inhibitory activities of polyphenolic-rich extracts of Syzygium cumini (Linn) Skeels leaf on two important enzymes relevant to type II diabetes mellitus. Ajiboye BO; Ojo OA; Oyinloye BE; Akuboh O; Okesola MA; Idowu O; Kappo AP Pak J Pharm Sci; 2020 Mar; 33(2):523-529. PubMed ID: 32276893 [TBL] [Abstract][Full Text] [Related]
26. Inhibitory potentials of phenolic-rich extracts from Bridelia ferruginea on two key carbohydrate-metabolizing enzymes and Fe Afolabi OB; Oloyede OI; Agunbiade SO J Integr Med; 2018 May; 16(3):192-198. PubMed ID: 29706572 [TBL] [Abstract][Full Text] [Related]
27. Antidiabetic potential of Catechu via assays for α-glucosidase, α-amylase, and glucose uptake in adipocytes. Zhang K; Chen XL; Zhao X; Ni JY; Wang HL; Han M; Zhang YM J Ethnopharmacol; 2022 Jun; 291():115118. PubMed ID: 35202712 [TBL] [Abstract][Full Text] [Related]
28. Chemical and biological insights on Cotoneaster integerrimus: A new (-)- epicatechin source for food and medicinal applications. Uysal A; Zengin G; Mollica A; Gunes E; Locatelli M; Yilmaz T; Aktumsek A Phytomedicine; 2016 Sep; 23(10):979-88. PubMed ID: 27444342 [TBL] [Abstract][Full Text] [Related]
30. Machine Learning and In Vitro Chemical Screening of Potential α-Amylase and α-Glucosidase Inhibitors from Thai Indigenous Plants. Srisongkram T; Waithong S; Thitimetharoch T; Weerapreeyakul N Nutrients; 2022 Jan; 14(2):. PubMed ID: 35057448 [TBL] [Abstract][Full Text] [Related]
31. Promising inhibition of diabetes-related enzymes and antioxidant properties of Sanna C; Fais A; Era B; Delogu GL; Sanna E; Dazzi L; Rosa A; Marengo A; Rubiolo P; De Agostini A; Floris S; Pintus F J Enzyme Inhib Med Chem; 2023 Dec; 38(1):2274798. PubMed ID: 37905438 [TBL] [Abstract][Full Text] [Related]
32. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase. Adisakwattana S; Ruengsamran T; Kampa P; Sompong W BMC Complement Altern Med; 2012 Jul; 12():110. PubMed ID: 22849553 [TBL] [Abstract][Full Text] [Related]
33. Inhibitory potential of phenolic compounds of Thai colored rice (Oryza sativa L.) against α-glucosidase and α-amylase through in vitro and in silico studies. Sansenya S; Payaka A J Sci Food Agric; 2022 Nov; 102(14):6718-6726. PubMed ID: 35620810 [TBL] [Abstract][Full Text] [Related]
34. Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities. Xiong J; Grace MH; Esposito D; Komarnytsky S; Wang F; Lila MA Chin J Nat Med; 2017 Nov; 15(11):816-824. PubMed ID: 29329608 [TBL] [Abstract][Full Text] [Related]
35. Polyphenol-rich extract and fractions of Terminalia phaeocarpa Eichler possess hypoglycemic effect, reduce the release of cytokines, and inhibit lipase, α-glucosidase, and α-amilase enzymes. Gomes JHS; Mbiakop UC; Oliveira RL; Stehmann JR; Pádua RM; Cortes SF; Braga FC J Ethnopharmacol; 2021 May; 271():113847. PubMed ID: 33515684 [TBL] [Abstract][Full Text] [Related]
36. Valorisation of kitul, an overlooked food plant: Phenolic profiling of fruits and inflorescences and assessment of their effects on diabetes-related targets. Ferreres F; Andrade C; Gomes NGM; Andrade PB; Gil-Izquierdo A; Pereira DM; Suksungworn R; Duangsrisai S; Videira RA; Valentão P Food Chem; 2021 Apr; 342():128323. PubMed ID: 33069534 [TBL] [Abstract][Full Text] [Related]
37. Fijian medicinal plants and their role in the prevention of Type 2 diabetes mellitus. Mala P; Khan GA; Gopalan R; Gedefaw D; Soapi K Biosci Rep; 2022 Nov; 42(11):. PubMed ID: 36149310 [TBL] [Abstract][Full Text] [Related]
38. Antioxidant and Antiglycation Activities of Syzygium paniculatum Gaertn and Inhibition of Digestive Enzymes Relevant to Type 2 Diabetes Mellitus. Kim S; Semple SJ; Simpson BS; Deo P Plant Foods Hum Nutr; 2020 Dec; 75(4):621-627. PubMed ID: 33009631 [TBL] [Abstract][Full Text] [Related]
39. Inhibitory effect of Azadirachta indica A. juss leaf extract on the activities of alpha-amylase and alpha-glucosidase. Kazeem MI; Dansu TV; Adeola SA Pak J Biol Sci; 2013 Nov; 16(21):1358-62. PubMed ID: 24511747 [TBL] [Abstract][Full Text] [Related]
40. Development of an antidiabetic polyherbal formulation (ADPHF6) and assessment of its antioxidant activity against ROS-induced damage in pUC19 and human lymphocytes - an in vitro study. Shanmugasundaram D; Duraiswamy A; Viswanathan A; Sasikumar CS; Cherian SM; Cherian KM J Complement Integr Med; 2016 Sep; 13(3):267-274. PubMed ID: 27352446 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]