These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36296848)

  • 61. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe-Salpeter equation calculations of molecules.
    McKeon CA; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2022 Aug; 157(7):074103. PubMed ID: 35987597
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quasiparticle electronic structure of copper in the GW approximation.
    Marini A; Onida G; Del Sole R
    Phys Rev Lett; 2002 Jan; 88(1):016403. PubMed ID: 11800975
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations.
    Fang C; Li WF; Koster RS; Klimeš J; van Blaaderen A; van Huis MA
    Phys Chem Chem Phys; 2015 Jan; 17(1):365-75. PubMed ID: 25388568
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Scrutinizing GW-Based Methods Using the Hubbard Dimer.
    Di Sabatino S; Loos PF; Romaniello P
    Front Chem; 2021; 9():751054. PubMed ID: 34778206
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dielectric embedding GW for weakly coupled molecule-metal interfaces.
    Liu ZF
    J Chem Phys; 2020 Feb; 152(5):054103. PubMed ID: 32035462
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The GW-Method for Quantum Chemistry Applications: Theory and Implementation.
    van Setten MJ; Weigend F; Evers F
    J Chem Theory Comput; 2013 Jan; 9(1):232-46. PubMed ID: 26589026
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A simple derivation of the exact quasiparticle theory and its extension to arbitrary initial excited eigenstates.
    Ohno K; Ono S; Isobe T
    J Chem Phys; 2017 Feb; 146(8):084108. PubMed ID: 28249434
    [TBL] [Abstract][Full Text] [Related]  

  • 69. GW-BSE Calculations of Electronic Band Gap and Optical Spectrum of ZnFe
    Ulpe AC; Bredow T
    Chemphyschem; 2020 Mar; 21(6):546-551. PubMed ID: 31916657
    [TBL] [Abstract][Full Text] [Related]  

  • 70. All-Electron Gaussian-Based
    Zhu T; Chan GK
    J Chem Theory Comput; 2021 Feb; 17(2):727-741. PubMed ID: 33397095
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electronic excitations of bulk LiCl from many-body perturbation theory.
    Jiang YF; Wang NP; Rohlfing M
    J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Many-body effects in iron pnictides and chalcogenides: nonlocal versus dynamic origin of effective masses.
    Tomczak JM; van Schilfgaarde M; Kotliar G
    Phys Rev Lett; 2012 Dec; 109(23):237010. PubMed ID: 23368252
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simple approximate physical orbitals for GW quasiparticle calculations.
    Samsonidze G; Jain M; Deslippe J; Cohen ML; Louie SG
    Phys Rev Lett; 2011 Oct; 107(18):186404. PubMed ID: 22107653
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Combining Wave Function Methods with Density Functional Theory for Excited States.
    Ghosh S; Verma P; Cramer CJ; Gagliardi L; Truhlar DG
    Chem Rev; 2018 Aug; 118(15):7249-7292. PubMed ID: 30044618
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Confined Monolayer Ag As a Large Gap 2D Semiconductor and Its Momentum Resolved Excited States.
    Lee W; Wang Y; Qin W; Kim H; Liu M; Nunley TN; Fang B; Maniyara R; Dong C; Robinson JA; Crespi VH; Li X; MacDonald AH; Shih CK
    Nano Lett; 2022 Oct; 22(19):7841-7847. PubMed ID: 36126277
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quasiparticle energies and band gaps in graphene nanoribbons.
    Yang L; Park CH; Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Assessment of the Linearized GW Density Matrix for Molecules.
    Bruneval F
    J Chem Theory Comput; 2019 Jul; 15(7):4069-4078. PubMed ID: 31194540
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Approximating Quasiparticle and Excitation Energies from Ground State Generalized Kohn-Sham Calculations.
    Mei Y; Li C; Su NQ; Yang W
    J Phys Chem A; 2019 Jan; 123(3):666-673. PubMed ID: 30589546
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Length dependence of electron transport through molecular wires--a first principles perspective.
    Khoo KH; Chen Y; Li S; Quek SY
    Phys Chem Chem Phys; 2015 Jan; 17(1):77-96. PubMed ID: 25407785
    [TBL] [Abstract][Full Text] [Related]  

  • 80. DFT-1/2 and shell DFT-1/2 methods: electronic structure calculation for semiconductors at LDA complexity.
    Mao GQ; Yan ZY; Xue KH; Ai Z; Yang S; Cui H; Yuan JH; Ren TL; Miao X
    J Phys Condens Matter; 2022 Aug; 34(40):. PubMed ID: 35856860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.