These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36297432)

  • 21. The Use of Rule-Based and QSPR Approaches in ADME Profiling: A Case Study on Caco-2 Permeability.
    Pham-The H; González-Álvarez I; Bermejo M; Garrigues T; Le-Thi-Thu H; Cabrera-Pérez MÁ
    Mol Inform; 2013 Jun; 32(5-6):459-79. PubMed ID: 27481666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing Pharmacokinetic Property Prediction Based on Integrated Datasets and a Deep Learning Approach.
    Wang X; Liu M; Zhang L; Wang Y; Li Y; Lu T
    J Chem Inf Model; 2020 Oct; 60(10):4603-4613. PubMed ID: 32804486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The "latent membrane permeability" concept: QSPR analysis of inter/intralaboratory variable Caco-2 permeability.
    Yamashita F; Fujiwara S; Hashida M
    J Chem Inf Comput Sci; 2002; 42(2):408-13. PubMed ID: 11911711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A corneal-PAMPA-based in silico model for predicting corneal permeability.
    Vincze A; Dargó G; Rácz A; Balogh GT
    J Pharm Biomed Anal; 2021 Sep; 203():114218. PubMed ID: 34166924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of ADME properties in drug discovery: predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices.
    Castillo-Garit JA; Marrero-Ponce Y; Torrens F; García-Domenech R
    J Pharm Sci; 2008 May; 97(5):1946-76. PubMed ID: 17724669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method.
    Yamashita F; Wanchana S; Hashida M
    J Pharm Sci; 2002 Oct; 91(10):2230-9. PubMed ID: 12226850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents.
    Wani MA; Roy KK
    Mol Divers; 2022 Jun; 26(3):1345-1356. PubMed ID: 34110578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure-Property Relationship Models.
    Baba H; Takahara J; Mamitsuka H
    Pharm Res; 2015 Jul; 32(7):2360-71. PubMed ID: 25616540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling and Prediction of Solvent Effect on Human Skin Permeability using Support Vector Regression and Random Forest.
    Baba H; Takahara J; Yamashita F; Hashida M
    Pharm Res; 2015 Nov; 32(11):3604-17. PubMed ID: 26033768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks.
    Paixão P; Gouveia LF; Morais JA
    Eur J Pharm Sci; 2010 Sep; 41(1):107-17. PubMed ID: 20621634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling Caco-2 permeability of drugs using immobilized artificial membrane chromatography and physicochemical descriptors.
    Chan EC; Tan WL; Ho PC; Fang LJ
    J Chromatogr A; 2005 Apr; 1072(2):159-68. PubMed ID: 15887485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BDDCS class prediction for new molecular entities.
    Broccatelli F; Cruciani G; Benet LZ; Oprea TI
    Mol Pharm; 2012 Mar; 9(3):570-80. PubMed ID: 22224483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach.
    Kharangarh S; Sandhu H; Tangadpalliwar S; Garg P
    Comb Chem High Throughput Screen; 2018; 21(8):557-566. PubMed ID: 30360705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of Machine Learning Methods towards Developing Interpretable Polyamide Property Prediction.
    Lee FL; Park J; Goyal S; Qaroush Y; Wang S; Yoon H; Rammohan A; Shim Y
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of the 96 well Caco-2 cell culture model for high throughput permeability assessment of discovery compounds.
    Marino AM; Yarde M; Patel H; Chong S; Balimane PV
    Int J Pharm; 2005 Jun; 297(1-2):235-41. PubMed ID: 15907606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Automated Framework for QSAR Modeling of Highly Imbalanced
    Casanova-Alvarez O; Morales-Helguera A; Cabrera-Pérez MÁ; Molina-Ruiz R; Molina C
    J Chem Inf Model; 2021 Jul; 61(7):3213-3231. PubMed ID: 34191520
    [No Abstract]   [Full Text] [Related]  

  • 37. Computational approaches for modeling human intestinal absorption and permeability.
    Subramanian G; Kitchen DB
    J Mol Model; 2006 Jul; 12(5):577-89. PubMed ID: 16583199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly predictive and interpretable models for PAMPA permeability.
    Sun H; Nguyen K; Kerns E; Yan Z; Yu KR; Shah P; Jadhav A; Xu X
    Bioorg Med Chem; 2017 Feb; 25(3):1266-1276. PubMed ID: 28082071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constructing an In Silico Three-Class Predictor of Human Intestinal Absorption With Caco-2 Permeability and Dried-DMSO Solubility.
    Esaki T; Ohashi R; Watanabe R; Natsume-Kitatani Y; Kawashima H; Nagao C; Komura H; Mizuguchi K
    J Pharm Sci; 2019 Nov; 108(11):3630-3639. PubMed ID: 31351866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Caco-2 cell permeability vs human gastrointestinal absorption: QSPR analysis.
    Ren S; Lien EJ
    Prog Drug Res; 2000; 54():1-23. PubMed ID: 10857384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.