These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36297994)

  • 1. Chemical Recycling of Polyolefins Waste Materials Using Supercritical Water.
    Čolnik M; Kotnik P; Knez Ž; Škerget M
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of Waste Tetra Pak Packaging with Hydrothermal Treatment in Sub-/Supercritical Water.
    Irgolič M; Čolnik M; Kotnik P; Škerget M
    Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercritical Water Liquefaction of Mixed Waste Polystyrene, Polypropylene, and Polyethylene for Production of High Yield Oils.
    Mathew M; Nahil MA; Ross AB; Williams PT
    Energy Fuels; 2024 Jul; 38(14):12810-12823. PubMed ID: 39050490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental analysis on products distribution, characterization and mechanism of waste polypropylene (PP) and polyethylene terephthalate (PET) degradation in sub-/supercritical water.
    Fu Z; Zhang YS; Ji G; Li A
    Chemosphere; 2024 Feb; 350():141045. PubMed ID: 38154671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.
    Miandad R; Barakat MA; Rehan M; Aburiazaiza AS; Ismail IMI; Nizami AS
    Waste Manag; 2017 Nov; 69():66-78. PubMed ID: 28882427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal recycling of waste polyolefin plastics into liquid fuels with high selectivity under solvent-free conditions.
    Miao Y; Zhao Y; Waterhouse GIN; Shi R; Wu LZ; Zhang T
    Nat Commun; 2023 Jul; 14(1):4242. PubMed ID: 37454122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interactions between mixed waste from discarded surgical masks and face shields during the degradation in supercritical water.
    Fu Z; Zhang YS; Ji G; Li A
    J Hazard Mater; 2023 Oct; 459():132338. PubMed ID: 37604037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High quality liquid fuel production from waste plastics via two-step cracking route in a bottom-up approach using bi-functional Fe/HZSM-5 catalyst.
    Dwivedi U; Naik SN; Pant KK
    Waste Manag; 2021 Aug; 132():151-161. PubMed ID: 34333250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastic waste management through liquefaction in hydrogen donating solvents: A review.
    Azman DQ; Wan Daud WMA; Abdul Patah MF; Amir Z; Saw PA
    J Environ Manage; 2024 May; 359():120961. PubMed ID: 38696851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upgrading of crude algal bio-oil in supercritical water.
    Duan P; Savage PE
    Bioresour Technol; 2011 Jan; 102(2):1899-906. PubMed ID: 20801646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel.
    Das P; Tiwari P
    Waste Manag; 2018 Sep; 79():615-624. PubMed ID: 30343794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-color polymer carbon dots synthesized from waste polyolefins through phenylenediamine-assisted hydrothermal processing.
    Takahashi Y; Chan K; Zinchenko A
    Chemosphere; 2024 Apr; 354():141685. PubMed ID: 38513957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste polypropylene plastic conversion into liquid hydrocarbon fuel for producing electricity and energies.
    Sarker M; Rashid MM; Molla M
    Environ Technol; 2012 Dec; 33(22-24):2709-21. PubMed ID: 23437672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals.
    Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B
    Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation and partial oxidation of waste plastic express packaging bags in supercritical water: Resources transformation and pollutants removal.
    Song Z; Xiu FR; Qi Y
    J Hazard Mater; 2022 Feb; 423(Pt A):127018. PubMed ID: 34461531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oily sludge treatment in subcritical and supercritical water: A review.
    Chen Z; Zheng Z; He C; Liu J; Zhang R; Chen Q
    J Hazard Mater; 2022 Jul; 433():128761. PubMed ID: 35364539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Destruction of environmental organic pollutants by supercritical water oxidation.
    Williams PT; Onwudili JA
    Environ Technol; 2006 Aug; 27(8):823-34. PubMed ID: 16972378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?
    Erkmen B; Ozdogan A; Ezdesir A; Celik G
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-pyrolysis of polypropylene waste with Brazilian heavy oil.
    Assumpção LC; Carbonell MM; Marques MR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):461-4. PubMed ID: 21409698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.