These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 36298101)

  • 21. Autonomous navigation of catheters and guidewires in mechanical thrombectomy using inverse reinforcement learning.
    Robertshaw H; Karstensen L; Jackson B; Granados A; Booth TC
    Int J Comput Assist Radiol Surg; 2024 Jun; ():. PubMed ID: 38884893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments.
    Park M; Lee SY; Hong JS; Kwon NK
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review.
    Nocentini O; Kim J; Bashir ZM; Cavallo F
    J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Virtual local target method for avoiding local minimum in potential field based robot navigation.
    Zou XY; Zhu J
    J Zhejiang Univ Sci; 2003; 4(3):264-9. PubMed ID: 12765277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. End-to-End Autonomous Navigation Based on Deep Reinforcement Learning with a Survival Penalty Function.
    Jeng SL; Chiang C
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896743
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimal selective floor cleaning using deep learning algorithms and reconfigurable robot hTetro.
    Ramalingam B; Le AV; Lin Z; Weng Z; Mohan RE; Pookkuttath S
    Sci Rep; 2022 Sep; 12(1):15938. PubMed ID: 36153413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coordinated Navigation of Two Agricultural Robots in a Vineyard: A Simulation Study.
    Lytridis C; Bazinas C; Pachidis T; Chatzis V; Kaburlasos VG
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework.
    Olayemi KB; Van M; McLoone S; McIlvanna S; Sun Y; Close J; Nguyen NM
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning Reward Function with Matching Network for Mapless Navigation.
    Zhang Q; Zhu M; Zou L; Li M; Zhang Y
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32629934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mobile Robot Application with Hierarchical Start Position DQN.
    Erkan E; Arserim MA
    Comput Intell Neurosci; 2022; 2022():4115767. PubMed ID: 36105641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.
    Zhang C; Sun C; Gao L; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6901-4. PubMed ID: 24111331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Olfaction and hearing based mobile robot navigation for odor/sound source search.
    Song K; Liu Q; Wang Q
    Sensors (Basel); 2011; 11(2):2129-54. PubMed ID: 22319401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TLBO-Based Adaptive Neurofuzzy Controller for Mobile Robot Navigation in a Strange Environment.
    Aouf A; Boussaid L; Sakly A
    Comput Intell Neurosci; 2018; 2018():3145436. PubMed ID: 29692803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Path Planning for Mobile Robot Based on Deep Deterministic Policy Gradient.
    Gong H; Wang P; Ni C; Cheng N
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591271
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robot navigation as hierarchical active inference.
    Çatal O; Verbelen T; Van de Maele T; Dhoedt B; Safron A
    Neural Netw; 2021 Oct; 142():192-204. PubMed ID: 34022669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning.
    Lambert R; Li J; Wu LF; Mahmoudian N
    Front Robot AI; 2021; 8():739023. PubMed ID: 34616776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Experimental Validation of Deep Reinforcement Learning-Based Fast Trajectory Planning and Control for Mobile Robot in Unknown Environment.
    Chai R; Niu H; Carrasco J; Arvin F; Yin H; Lennox B
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5778-5792. PubMed ID: 36215389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Koopman Operator-Based Knowledge-Guided Reinforcement Learning for Safe Human-Robot Interaction.
    Sinha A; Wang Y
    Front Robot AI; 2022; 9():779194. PubMed ID: 35783024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning.
    Zhang X; Wang C; Liu Y; Chen X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.