These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36298205)

  • 1. SRAM-Based CIM Architecture Design for Event Detection.
    Sulaiman MBG; Lin JY; Li JB; Shih CM; Juang KC; Lu CC
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A compute-in-memory chip based on resistive random-access memory.
    Wan W; Kubendran R; Schaefer C; Eryilmaz SB; Zhang W; Wu D; Deiss S; Raina P; Qian H; Gao B; Joshi S; Wu H; Wong HP; Cauwenberghs G
    Nature; 2022 Aug; 608(7923):504-512. PubMed ID: 35978128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MONETA: A Processing-In-Memory-Based Hardware Platform for the Hybrid Convolutional Spiking Neural Network With Online Learning.
    Kim D; Chakraborty B; She X; Lee E; Kang B; Mukhopadhyay S
    Front Neurosci; 2022; 16():775457. PubMed ID: 35478844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CIM-Based Smart Pose Detection Sensors.
    Chou JJ; Chang TW; Liu XY; Wu TY; Chen YK; Hsu YT; Chen CW; Liu TT; Shih CS
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCA: Search-Based Computing Hardware Architecture with Precision Scalable and Computation Reconfigurable Scheme.
    Chang L; Zhao X; Zhou J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance estimation for the memristor-based computing-in-memory implementation of extremely factorized network for real-time and low-power semantic segmentation.
    Dong S; Fan Z; Chen Y; Chen K; Qin M; Zeng M; Lu X; Zhou G; Gao X; Liu JM
    Neural Netw; 2023 Mar; 160():202-215. PubMed ID: 36657333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A lightweight convolutional neural network hardware implementation for wearable heart rate anomaly detection.
    Gu M; Zhang Y; Wen Y; Ai G; Zhang H; Wang P; Wang G
    Comput Biol Med; 2023 Mar; 155():106623. PubMed ID: 36809696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MSPAN: A Memristive Spike-Based Computing Engine With Adaptive Neuron for Edge Arrhythmia Detection.
    Jiang J; Tian F; Liang J; Shen Z; Liu Y; Zheng J; Wu H; Zhang Z; Fang C; Zhao Y; Shi J; Xue X; Zeng X
    Front Neurosci; 2021; 15():761127. PubMed ID: 34975373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable on-device deep learning system for hand gesture recognition based on FPGA accelerator.
    Jiang W; Ye X; Chen R; Su F; Lin M; Ma Y; Zhu Y; Huang S
    Math Biosci Eng; 2020 Nov; 18(1):132-153. PubMed ID: 33525084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating Inference of Convolutional Neural Networks Using In-memory Computing.
    Dazzi M; Sebastian A; Benini L; Eleftheriou E
    Front Comput Neurosci; 2021; 15():674154. PubMed ID: 34413731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Deep Learning-Based End-to-End Composite System for Hand Detection and Gesture Recognition.
    Mohammed AAQ; Lv J; Islam MDS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31801226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Acceleration of 2-D and 3-D CNNs on FPGAs Using Static Block Floating Point.
    Fan H; Liu S; Que Z; Niu X; Luk W
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4473-4487. PubMed ID: 34644253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Area- and Energy-Efficient Spiking Neural Network With Spike-Time-Dependent Plasticity Realized With SRAM Processing-in-Memory Macro and On-Chip Unsupervised Learning.
    Liu S; Wang JJ; Zhou JT; Hu SG; Yu Q; Chen TP; Liu Y
    IEEE Trans Biomed Circuits Syst; 2023 Feb; 17(1):92-104. PubMed ID: 37015137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Architecture of Floating-Point Arithmetic for Neural Network Training Processors.
    Junaid M; Arslan S; Lee T; Kim H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ETA: An Efficient Training Accelerator for DNNs Based on Hardware-Algorithm Co-Optimization.
    Lu J; Ni C; Wang Z
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7660-7674. PubMed ID: 35133969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Accelerator Design Using a MTCA Decomposition Algorithm for CNNs.
    Zhao Y; Lu J; Chen X
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lightweight and Energy-Efficient Deep Learning Accelerator for Real-Time Object Detection on Edge Devices.
    Kim K; Jang SJ; Park J; Lee E; Lee SS
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ACE-SNN: Algorithm-Hardware Co-design of Energy-Efficient & Low-Latency Deep Spiking Neural Networks for 3D Image Recognition.
    Datta G; Kundu S; Jaiswal AR; Beerel PA
    Front Neurosci; 2022; 16():815258. PubMed ID: 35464314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compute in-Memory with Non-Volatile Elements for Neural Networks: A Review from a Co-Design Perspective.
    Haensch W; Raghunathan A; Roy K; Chakrabarti B; Phatak CM; Wang C; Guha S
    Adv Mater; 2023 Sep; 35(37):e2204944. PubMed ID: 36579797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of surgical hand gesture recognition using a capsule network for a contactless interface in the operating room.
    Lee AR; Cho Y; Jin S; Kim N
    Comput Methods Programs Biomed; 2020 Jul; 190():105385. PubMed ID: 32062090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.