These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 36298250)
1. Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network. Sun L; Qin H; Przystupa K; Majka M; Kochan O Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298250 [TBL] [Abstract][Full Text] [Related]
2. Load forecasting method based on CEEMDAN and TCN-LSTM. Heng L; Hao C; Nan LC PLoS One; 2024; 19(7):e0300496. PubMed ID: 38968242 [TBL] [Abstract][Full Text] [Related]
3. Feature selection in wind speed forecasting systems based on meta-heuristic optimization. El-Kenawy EM; Mirjalili S; Khodadadi N; Abdelhamid AA; Eid MM; El-Said M; Ibrahim A PLoS One; 2023; 18(2):e0278491. PubMed ID: 36749744 [TBL] [Abstract][Full Text] [Related]
4. Research on Impulse Power Load Forecasting Based on Improved Recurrent Neural Networks. Feng C; Xu K; Ma H Comput Intell Neurosci; 2022; 2022():2784563. PubMed ID: 35502351 [TBL] [Abstract][Full Text] [Related]
5. Short-term power load forecasting method based on Bagging-stochastic configuration networks. Pang X; Sun W; Li H; Liu W; Luan C PLoS One; 2024; 19(3):e0300229. PubMed ID: 38502675 [TBL] [Abstract][Full Text] [Related]
6. Multi-model fusion short-term power load forecasting based on improved WOA optimization. Ji X; Liu D; Xiong P Math Biosci Eng; 2022 Sep; 19(12):13399-13420. PubMed ID: 36654052 [TBL] [Abstract][Full Text] [Related]
7. Hyperparameter Optimization of Bayesian Neural Network Using Bayesian Optimization and Intelligent Feature Engineering for Load Forecasting. Zulfiqar M; Gamage KAA; Kamran M; Rasheed MB Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746227 [TBL] [Abstract][Full Text] [Related]
8. Short-term load forecasting system based on sliding fuzzy granulation and equilibrium optimizer. Li S; Wang J; Zhang H; Liang Y Appl Intell (Dordr); 2023 Jun; ():1-35. PubMed ID: 37363386 [TBL] [Abstract][Full Text] [Related]
9. Improving the Efficiency of Multistep Short-Term Electricity Load Forecasting via R-CNN with ML-LSTM. Alsharekh MF; Habib S; Dewi DA; Albattah W; Islam M; Albahli S Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146256 [TBL] [Abstract][Full Text] [Related]
10. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting. Yang S; Yuan A; Yu Z Environ Sci Pollut Res Int; 2023 Jan; 30(5):11689-11705. PubMed ID: 36098919 [TBL] [Abstract][Full Text] [Related]
11. An adaptive backpropagation algorithm for long-term electricity load forecasting. Mohammed NA; Al-Bazi A Neural Comput Appl; 2022; 34(1):477-491. PubMed ID: 34393381 [TBL] [Abstract][Full Text] [Related]
12. Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks. Pavićević M; Popović T Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161797 [TBL] [Abstract][Full Text] [Related]
13. Electricity Load and Price Forecasting Using Jaya-Long Short Term Memory (JLSTM) in Smart Grids. Khalid R; Javaid N; Al-Zahrani FA; Aurangzeb K; Qazi EU; Ashfaq T Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285785 [TBL] [Abstract][Full Text] [Related]
14. Multi-Step Hourly Power Consumption Forecasting in a Healthcare Building with Recurrent Neural Networks and Empirical Mode Decomposition. Fernández-Martínez D; Jaramillo-Morán MA Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632071 [TBL] [Abstract][Full Text] [Related]
15. Short-Term Load Forecasting Based on EEMD-WOA-LSTM Combination Model. Shao L; Guo Q; Li C; Li J; Yan H Appl Bionics Biomech; 2022; 2022():2166082. PubMed ID: 36060556 [TBL] [Abstract][Full Text] [Related]
16. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands. Butt FM; Hussain L; Mahmood A; Lone KJ Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099 [TBL] [Abstract][Full Text] [Related]
17. Optimizing electric load forecasting with support vector regression/LSTM optimized by flexible Gorilla troops algorithm and neural networks a case study. Zhang Z; Zhang Q; Liang H; Gorbani B Sci Rep; 2024 Sep; 14(1):22092. PubMed ID: 39333276 [TBL] [Abstract][Full Text] [Related]
18. Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow. Chen Q; Wen D; Li X; Chen D; Lv H; Zhang J; Gao P PLoS One; 2019; 14(9):e0222365. PubMed ID: 31509599 [TBL] [Abstract][Full Text] [Related]
19. An ADMM-LSTM framework for short-term load forecasting. Liu S; Kong Z; Huang T; Du Y; Xiang W Neural Netw; 2024 May; 173():106150. PubMed ID: 38330747 [TBL] [Abstract][Full Text] [Related]
20. Improved Neural Networks with Random Weights for Short-Term Load Forecasting. Lang K; Zhang M; Yuan Y PLoS One; 2015; 10(12):e0143175. PubMed ID: 26629825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]