These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36298305)

  • 1. Fuzzy Ontology-Based System for Driver Behavior Classification.
    Fernandez S; Ito T; Cruz-Piris L; Marsa-Maestre I
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LAVIA--an evaluation of the potential safety benefits of the French intelligent speed adaptation project.
    Driscoll R; Page Y; Lassarre S; Ehrlich J
    Annu Proc Assoc Adv Automot Med; 2007; 51():485-505. PubMed ID: 18184509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do drivers overtake pedestrians? Evidence from field test and naturalistic driving data.
    Rasch A; Panero G; Boda CN; Dozza M
    Accid Anal Prev; 2020 May; 139():105494. PubMed ID: 32203729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart roadside system for driver assistance and safety warnings: framework and applications.
    Jang JA; Kim HS; Cho HB
    Sensors (Basel); 2011; 11(8):7420-36. PubMed ID: 22164025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does assisted driving behavior lead to safety-critical encounters with unequipped vehicles' drivers?
    Preuk K; Stemmler E; Schießl C; Jipp M
    Accid Anal Prev; 2016 Oct; 95(Pt A):149-56. PubMed ID: 27442594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of cooperative systems on driver behavior in heavy fog condition based on a driving simulator.
    Chang X; Li H; Qin L; Rong J; Lu Y; Chen X
    Accid Anal Prev; 2019 Jul; 128():197-205. PubMed ID: 31054492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying visual road environment to establish a speeding prediction model: An examination using naturalistic driving data.
    Yu B; Chen Y; Bao S
    Accid Anal Prev; 2019 Aug; 129():289-298. PubMed ID: 31177040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent Driving Assistant Based on Road Accident Risk Map Analysis and Vehicle Telemetry.
    Terán J; Navarro L; Quintero M CG; Pardo M
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32235783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization and analysis of mapping knowledge domain of road safety studies.
    Zou X; Yue WL; Vu HL
    Accid Anal Prev; 2018 Sep; 118():131-145. PubMed ID: 29958121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A context-aware driver model for determining recommended speed in blind intersection situations.
    Saito Y; Sugaya F; Inoue S; Raksincharoensak P; Inoue H
    Accid Anal Prev; 2021 Dec; 163():106447. PubMed ID: 34673382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network.
    Fernandez S; Hadfi R; Ito T; Marsa-Maestre I; Velasco JR
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27537878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driver models for the definition of safety requirements of automated vehicles in international regulations. Application to motorway driving conditions.
    Mattas K; Albano G; Donà R; Galassi MC; Suarez-Bertoa R; Vass S; Ciuffo B
    Accid Anal Prev; 2022 Sep; 174():106743. PubMed ID: 35700684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver Behavior Profiling and Recognition Using Deep-Learning Methods: In Accordance with Traffic Regulations and Experts Guidelines.
    Al-Hussein WA; Por LY; Kiah MLM; Zaidan BB
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Driver Behavior in Road Traffic Simulation.
    Mecheva T; Furnadzhiev R; Kakanakov N
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using naturalistic driving data to explore the association between traffic safety-related events and crash risk at driver level.
    Wu KF; Aguero-Valverde J; Jovanis PP
    Accid Anal Prev; 2014 Nov; 72():210-8. PubMed ID: 25086439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach.
    Čubranić-Dobrodolac M; Švadlenka L; Čičević S; Dobrodolac M
    Int J Inj Contr Saf Promot; 2020 Jun; 27(2):156-167. PubMed ID: 31718434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practice makes better - Learning effects of driving with a multi-stage collision warning.
    Winkler S; Kazazi J; Vollrath M
    Accid Anal Prev; 2018 Aug; 117():398-409. PubMed ID: 29477461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steering or braking avoidance response in SHRP2 rear-end crashes and near-crashes: A decision tree approach.
    Sarkar A; Hickman JS; McDonald AD; Huang W; Vogelpohl T; Markkula G
    Accid Anal Prev; 2021 May; 154():106055. PubMed ID: 33691227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems.
    Rahman MM; Lesch MF; Horrey WJ; Strawderman L
    Accid Anal Prev; 2017 Nov; 108():361-373. PubMed ID: 28957759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach to set driving simulator experiments based on traffic crash data.
    Bobermin M; Ferreira S
    Accid Anal Prev; 2021 Feb; 150():105938. PubMed ID: 33338910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.