These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36298310)

  • 1. CeRA-eSP: Code-Expanded Random Access to Enhance Success Probability of Massive MTC.
    Youn J; Park J; Oh J; Kim S; Ahn S; Cho S; Park S; You C
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preamble Design and Collision Resolution in a Massive Access IoT System.
    Zhong A; Li Z; Wang R; Li X; Guo B
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interference-Aware Subcarrier Allocation for Massive Machine-Type Communication in 5G-Enabled Internet of Things.
    Hou W; Li S; Sun Y; Zhou J; Yun X; Lu N
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random-Access Accelerator (RAA): A Framework to Speed Up the Random-Access Procedure in 5G New Radio for IoT mMTC by Enabling Device-To-Device Communications.
    Rodriguez Medel A; C Brito JM
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic RACH Partition for Massive Access of Differentiated M2M Services.
    Du Q; Li W; Liu L; Ren P; Wang Y; Sun L
    Sensors (Basel); 2016 Mar; 16(4):455. PubMed ID: 27043568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting the Capture Effect to Enhance RACH Performance in Cellular-Based M2M Communications.
    Kim J; Lee J
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28934146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uplink Non-Orthogonal Multiple Access with Channel Estimation Errors for Internet of Things Applications.
    Rim M; Kang CG
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30795604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrowband Internet of Things via Low Earth Orbit Satellite Networks: An Efficient Coverage Enhancement Mechanism Based on Stochastic Geometry Approach.
    Hong T; Yu X; Liu Z; Ding X; Zhang G
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Intelligent Load Control-Based Random Access Scheme for Space-Based Internet of Things.
    Fei C; Jiang B; Xu K; Wang L; Zhao B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33546348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource-Efficient Parallelized Random Access for Reliable Connection Establishment in Cellular IoT Networks.
    Kim T; Chae S; Lim JT; Bang I
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-Efficient AP Selection Using Intelligent Access Point System to Increase the Lifespan of IoT Devices.
    Lee S; Park J; Choi H; Oh H
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Resource Allocation and Access Class Barring Scheme for Delay-Sensitive Devices in Machine to Machine (M2M) Communications.
    Li N; Cao C; Wang C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28617342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Massive Access Control Aided by Knowledge-Extraction for Co-Existing Periodic and Random Services over Wireless Clinical Networks.
    Du Q; Zhao W; Li W; Zhang X; Sun B; Song H; Ren P; Sun L; Wang Y
    J Med Syst; 2016 Jul; 40(7):171. PubMed ID: 27240842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed Group Location Update Algorithm for Massive Machine Type Communication.
    Paik M; Ko H
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is Satellite Ahead of Terrestrial in Deploying NOMA for Massive Machine-Type Communications?
    Arcidiacono A; Finocchiaro D; De Gaudenzi R; Del Rio-Herrero O; Cioni S; Andrenacci M; Andreotti R
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delayed Response and Random Backoff First for Low-Power Random Access of IoT Devices with Poor Channel Conditions.
    Rim M
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.
    Lei C; Bie H; Fang G; Gaura E; Brusey J; Zhang X; Dutkiewicz E
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27438839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SF-Partition-Based Clustering and Relaying Scheme for Resolving Near-Far Unfairness in IoT Multihop LoRa Networks.
    Mugerwa D; Nam Y; Choi H; Shin Y; Lee E
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overload Control for Signaling Congestion of Machine Type Communications in 3GPP Networks.
    Lu Z; Pan Q; Wang L; Wen X
    PLoS One; 2016; 11(12):e0167380. PubMed ID: 27936011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Narrowband Internet of Things (NB-IoT): From Physical (PHY) and Media Access Control (MAC) Layers Perspectives.
    Mwakwata CB; Malik H; Alam MM; Moullec YL; Parand S; Mumtaz S
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.