These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36298395)

  • 1. Scale Factor Estimation for Quadrotor Monocular-Vision Positioning Algorithms.
    Gómez-Casasola A; Rodríguez-Cortés H
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sensor Fusion Approach to Observe Quadrotor Velocity.
    Meza-Ibarra JR; Martínez-Ulloa J; Moreno-Pacheco LA; Rodríguez-Cortés H
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Optimal States Estimation with Inertial and Delayed Visual Measurements for Unmanned Aerial Vehicles.
    Sun X; Zhang C; Zou L; Li S
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vision-Based SLAM System for Unmanned Aerial Vehicles.
    Munguía R; Urzua S; Bolea Y; Grau A
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26999131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observer-based controller for VTOL-UAVs tracking using direct Vision-Aided Inertial Navigation measurements.
    Hashim HA; Eltoukhy AEE; Odry A
    ISA Trans; 2023 Jun; 137():133-143. PubMed ID: 36588058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monocular Visual SLAM Based on a Cooperative UAV-Target System.
    Trujillo JC; Munguia R; Urzua S; Guerra E; Grau A
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Onboard Vision-Based System for Autonomous Landing of a Low-Cost Quadrotor on a Novel Landing Pad.
    Liu X; Zhang S; Tian J; Liu L
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems.
    Vetrella AR; Fasano G; Accardo D; Moccia A
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fault Estimation Method for Nonlinear Time-Delay System Based on Intermediate Observer-Application on Quadrotor Unmanned Aerial Vehicle.
    Huang Q; Qi J; Dai X; Wu Q; Xie X; Zhang E
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments.
    López E; García S; Barea R; Bergasa LM; Molinos EJ; Arroyo R; Romera E; Pardo S
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28397758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Optical Flow Sensor Using a Gimbal for Quadrotor Navigation in GPS-Denied Environment.
    Flores J; Gonzalez-Hernandez I; Salazar S; Lozano R; Reyes C
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative Monocular-Based SLAM for Multi-UAV Systems in GPS-Denied Environments.
    Trujillo JC; Munguia R; Guerra E; Grau A
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29701722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power Tower Inspection Simultaneous Localization and Mapping: A Monocular Semantic Positioning Approach for UAV Transmission Tower Inspection.
    Liu Z; Miao X; Xie Z; Jiang H; Chen J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual SLAM for Unmanned Aerial Vehicles: Localization and Perception.
    Zhuang L; Zhong X; Xu L; Tian C; Yu W
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Information fusion estimation-based path following control of quadrotor UAVs subjected to Gaussian random disturbance.
    Xu Q; Wang Z; Zhen Z
    ISA Trans; 2020 Apr; 99():84-94. PubMed ID: 31629487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Linear Quadratic Attitude Tracking Control of a Quadrotor UAV Based on IMU Sensor Data Fusion.
    Koksal N; Jalalmaab M; Fidan B
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30583553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VIAE-Net: An End-to-End Altitude Estimation through Monocular Vision and Inertial Feature Fusion Neural Networks for UAV Autonomous Landing.
    Zhang X; He Z; Ma Z; Jun P; Yang K
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Singular Finite Time Tracking Control Approach Based on Disturbance Observers for Perturbed Quadrotor Unmanned Aerial Vehicles.
    El-Sousy FFM; Alattas KA; Mofid O; Mobayen S; Asad JH; Skruch P; Assawinchaichote W
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive vision-based control of an unmanned aerial vehicle without linear velocity measurements.
    Jabbari Asl H; Yoon J
    ISA Trans; 2016 Nov; 65():296-306. PubMed ID: 27666922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Output feedback control of a quadrotor UAV using neural networks.
    Dierks T; Jagannathan S
    IEEE Trans Neural Netw; 2010 Jan; 21(1):50-66. PubMed ID: 19963698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.