These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 36298406)

  • 1. Influence of Time-Lag Effects between Winter-Wheat Canopy Temperature and Atmospheric Temperature on the Accuracy of CWSI Inversion of Photosynthetic Parameters.
    Wang Y; Lu Y; Yang N; Wang J; Huang Z; Chen J; Zhang Z
    Plants (Basel); 2024 Jun; 13(12):. PubMed ID: 38931132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an Open-Source Thermal Image Processing Software for Improving Irrigation Management in Potato Crops (
    Cucho-Padin G; Rinza J; Ninanya J; Loayza H; Quiroz R; Ramírez DA
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31947632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring soil moisture in winter wheat with crop water stress index based on canopy-air temperature time lag effect.
    Zhang Q; Yang X; Liu C; Yang N; Yu G; Zhang Z; Chen Y; Yao Y; Hu X
    Int J Biometeorol; 2024 Apr; 68(4):647-659. PubMed ID: 38172400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Multi-Image Unmanned Aerial Vehicle Based High-Throughput Field Phenotyping of Canopy Temperature.
    Perich G; Hund A; Anderegg J; Roth L; Boer MP; Walter A; Liebisch F; Aasen H
    Front Plant Sci; 2020; 11():150. PubMed ID: 32158459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Unmanned Aerial Vehicle (UAV) Sensing for Water Status Estimation in Vineyards under Different Pruning Strategies.
    Nowack JC; Atencia-Payares LK; Tarquis AM; Gomez-Del-Campo M
    Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative field scale phenotyping for investigating metabolic components of water stress within a vineyard.
    Gago J; Fernie AR; Nikoloski Z; Tohge T; Martorell S; Escalona JM; Ribas-Carbó M; Flexas J; Medrano H
    Plant Methods; 2017; 13():90. PubMed ID: 29093742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lumped Parameter Thermal Network Modeling and Thermal Optimization Design of an Aerial Camera.
    Fan Y; Feng W; Ren Z; Liu B; Wang D
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Thermal Principles for the Automation of the Thermographic Monitoring of Cultural Heritage.
    Garrido I; Lagüela S; Sfarra S; Arias P
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Smart Crop Water Stress Index-Based IoT Solution for Precision Irrigation of Wine Grape.
    Fuentes-Peñailillo F; Ortega-Farías S; Acevedo-Opazo C; Rivera M; Araya-Alman M
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards the automation of NIR spectroscopy to assess vineyard water status spatial-temporal variability from a ground moving vehicle.
    Fernández-Novales J; Barrio I; Diago MP
    Sci Rep; 2023 Aug; 13(1):13362. PubMed ID: 37591887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Aerial Thermal Imagery to Evaluate Water Status in
    Araújo-Paredes C; Portela F; Mendes S; Valín MI
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.
    Möller M; Alchanatis V; Cohen Y; Meron M; Tsipris J; Naor A; Ostrovsky V; Sprintsin M; Cohen S
    J Exp Bot; 2007; 58(4):827-38. PubMed ID: 16968884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vineyard water status assessment using on-the-go thermal imaging and machine learning.
    Gutiérrez S; Diago MP; Fernández-Novales J; Tardaguila J
    PLoS One; 2018; 13(2):e0192037. PubMed ID: 29389982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation.
    Buunk T; Vélez S; Ariza-Sentís M; Valente J
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.
    Maes WH; Steppe K
    J Exp Bot; 2012 Aug; 63(13):4671-712. PubMed ID: 22922637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconciling and contextualising multi-dimensional aspects for consolidated water security index: A synthesis.
    Rafaai NH; Lee KE
    J Environ Manage; 2024 May; 359():121067. PubMed ID: 38718607
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.