These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36298432)

  • 1. Improving the Sensing Properties of Graphene MEMS Pressure Sensor by Low-Temperature Annealing in Atmosphere.
    Liu D; Wei S; Wang D
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Crossbeam Structure with Graphene Sensing Element for N/MEMS Mechanical Sensors.
    Wang J; Zhu Z; Qi Y; Li M
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annealing effect on UV-illuminated recovery in gas response of graphene-based NO
    Yang CM; Chen TC; Yang YC; Meyyappan M
    RSC Adv; 2019 Jul; 9(40):23343-23351. PubMed ID: 35514485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Post-deposition Annealing of Graphene Ink Enables Ultrasensitive Electrochemical Detection of Dopamine.
    Butler D; Moore D; Glavin NR; Robinson JA; Ebrahimi A
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11185-11194. PubMed ID: 33645208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene "microdrums" on a freestanding perforated thin membrane for high sensitivity MEMS pressure sensors.
    Wang Q; Hong W; Dong L
    Nanoscale; 2016 Apr; 8(14):7663-71. PubMed ID: 26988111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress Effects on Temperature-Dependent In-Plane Raman Modes of Supported Monolayer Graphene Induced by Thermal Annealing.
    Wei Y; Wei Z; Zheng X; Liu J; Chen Y; Su Y; Luo W; Peng G; Huang H; Cai W; Deng C; Zhang X; Qin S
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-layer graphene pirani pressure sensors.
    Romijn J; Dolleman RJ; Singh M; van der Zant HSJ; Steeneken PG; Sarro PM; Vollebregt S
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33971630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AFM-Based Characterization Method of Capacitive MEMS Pressure Sensors for Cardiological Applications.
    Miguel JA; Lechuga Y; Martinez M
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoelectromechanical Temperature Sensor Based on Piezoresistive Properties of Suspended Graphene Film.
    Han S; Zhou S; Mei L; Guo M; Zhang H; Li Q; Zhang S; Niu Y; Zhuang Y; Geng W; Bi K; Chou X
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in high-performance MEMS pressure sensors: design, fabrication, and packaging.
    Han X; Huang M; Wu Z; Gao Y; Xia Y; Yang P; Fan S; Lu X; Yang X; Liang L; Su W; Wang L; Cui Z; Zhao Y; Li Z; Zhao L; Jiang Z
    Microsyst Nanoeng; 2023; 9():156. PubMed ID: 38125202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic Soft Polymer Microstructures and Piezoresistive Graphene MEMS Sensors Using Sacrificial Metal 3D Printing.
    Kamat AM; Pei Y; Jayawardhana B; Kottapalli AGP
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1094-1104. PubMed ID: 33395251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material.
    Ashraf A; Wu Y; Wang MC; Aluru NR; Dastgheib SA; Nam S
    Langmuir; 2014 Nov; 30(43):12827-36. PubMed ID: 25310520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Sensitivity Graphene MOEMS Resonant Pressure Sensor.
    Liu Y; Li C; Shi X; Wu Z; Fan S; Wan Z; Han S
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30479-30485. PubMed ID: 37307273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterials Based Micro/Nanoelectromechanical System (MEMS and NEMS) Devices.
    Torkashvand Z; Shayeganfar F; Ramazani A
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced NO
    Lim N; Kim H; Pak Y; Byun YT
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetoresistance properties in nickel-catalyzed, air-stable, uniform, and transfer-free graphene.
    Chen BY; Chen BW; Uen WY; Chen C; Chuang C; Tsai DS
    Nanotechnology; 2024 Feb; 35(20):. PubMed ID: 38286015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.
    Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE
    Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Step Synthesis of Microdome Patterns for Microstructured Pressure Sensors with Ultra-High Sensing Performance.
    Tang ZH; Xue SS; Li YQ; Zhu ZC; Huang P; Fu SY
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48009-48019. PubMed ID: 34596376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Optimization of a Pressure Sensor Based on Serpentine-Shaped Graphene Piezoresistors for Measuring Low Pressure.
    Ren X; Liu X; Su X; Jiang X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and Performance of MEMS-Based Pressure Sensor Packages Using Patterned Ultra-Thick Photoresists.
    Chen LT; Chang JS; Hsu CY; Cheng WH
    Sensors (Basel); 2009; 9(8):6200-18. PubMed ID: 22454580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.