These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36298876)

  • 1. Alteration of iron-rich lacustrine sediments by dissimilatory iron-reducing bacteria.
    Crowe SA; Roberts JA; Weisener CG; Fowle DA
    Geobiology; 2007 Mar; 5(1):63-73. PubMed ID: 36298876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?
    Grybos M; Davranche M; Gruau G; Petitjean P
    J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions.
    Benaiges-Fernandez R; Palau J; Offeddu FG; Cama J; Urmeneta J; Soler JM; Dold B
    Mar Environ Res; 2019 Oct; 151():104782. PubMed ID: 31514974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical distribution of dissimilatory iron reducing communities in the sediments of Taihu Lake.
    Li Y; Liu H; Ye D; Jiang Q; Cui X; Li J; Jiang J; Wang L; Lu X
    Sci Total Environ; 2023 Sep; 889():164332. PubMed ID: 37209744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissimilatory iron reduction contributes to anaerobic mineralization of sediment in a shallow transboundary lake.
    Yuan Y; Ding C; Wu H; Tian X; Luo M; Chang W; Qin L; Yang L; Zou Y; Dong K; Zhu X; Jiang M; Otte ML
    Fundam Res; 2023 Nov; 3(6):844-851. PubMed ID: 38933009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater.
    Percak-Dennett EM; Beard BL; Xu H; Konishi H; Johnson CM; Roden EE
    Geobiology; 2011 May; 9(3):205-20. PubMed ID: 21504536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.
    Porcal P; Koprivnjak JF; Molot LA; Dillon PJ
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for microbial Fe(III) reduction in anoxic, mining-impacted lake sediments (Lake Coeur d'Alene, Idaho).
    Cummings DE; March AW; Bostick B; Spring S; Caccavo F; Fendorf S; Rosenzweig RF
    Appl Environ Microbiol; 2000 Jan; 66(1):154-62. PubMed ID: 10618217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks.
    Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE
    Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments.
    Butler BA
    Water Res; 2011 Jan; 45(1):328-36. PubMed ID: 20709348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemical and Stable Fe Isotopic Analysis of Dissimilatory Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park.
    Fortney NW; Beard BL; Hutchings JA; Shields MR; Bianchi TS; Boyd ES; Johnson CM; Roden EE
    Astrobiology; 2021 Jan; 21(1):83-102. PubMed ID: 32580560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation.
    Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L
    J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox status and heavy metal risk in intertidal sediments in NW Spain as inferred from the degrees of pyritization of iron and trace elements.
    Alvarez-Iglesias P; Rubio B
    Mar Pollut Bull; 2009 Apr; 58(4):542-51. PubMed ID: 19114282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioavailability of chromium, nickel, iron and manganese in relation to their speciation in coastal sediments downstream of ultramafic catchments: A case study in New Caledonia.
    Merrot P; Juillot F; Flipo L; Tharaud M; Viollier E; Noël V; Le Pape P; Fernandez JM; Moreton B; Morin G
    Chemosphere; 2022 Sep; 302():134643. PubMed ID: 35483664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trace element fixation in sediments rich in organic matter from a saline lake in tropical latitude with hydrothermal inputs (Sochagota Lake, Colombia): The role of bacterial communities.
    Cifuentes GR; Jiménez-Millán J; Quevedo CP; Gálvez A; Castellanos-Rozo J; Jiménez-Espinosa R
    Sci Total Environ; 2021 Mar; 762():143113. PubMed ID: 33131835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.
    Cooper DC; Picardal FF; Coby AJ
    Environ Sci Technol; 2006 Mar; 40(6):1884-91. PubMed ID: 16570612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria.
    Liu C; Gorby YA; Zachara JM; Fredrickson JK; Brown CF
    Biotechnol Bioeng; 2002 Dec; 80(6):637-49. PubMed ID: 12378605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability and risk assessment of trace metals in sediments of a high-altitude eutrophic lake, Ooty, Tamil Nadu, India.
    Parthasarathy P; Asok M; Ranjan RK; Swain SK
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):18616-18631. PubMed ID: 33078359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of dissolved and labile particulate trace metals in the overlying bottom water in the Vistula River plume (southern Baltic Sea).
    Sokolowski A; Wolowicz M; Hummel H
    Mar Pollut Bull; 2001 Oct; 42(10):967-80. PubMed ID: 11693652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.