These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36299009)

  • 1. Precise detection of water surface through the analysis of a single green waveform from bathymetry LiDAR.
    Tao B; Li J; Guo W; He Y; Li Y; Huang H; Yu J; Mao Z
    Opt Express; 2022 Oct; 30(22):40820-40841. PubMed ID: 36299009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Depth-Adaptive Waveform Decomposition Method for Airborne LiDAR Bathymetry.
    Xing S; Wang D; Xu Q; Lin Y; Li P; Jiao L; Zhang X; Liu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31757030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Use of Green Laser in LiDAR Bathymetry: State of the Art and Recent Advancements.
    Szafarczyk A; Toś C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous sensing profiles of beam attenuation coefficient and volume scattering function at 180° using a single-photon underwater elastic-Raman lidar.
    Shangguan M; Liao Z; Guo Y
    Opt Express; 2024 Feb; 32(5):8189-8204. PubMed ID: 38439482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing the profile of particulate beam attenuation coefficient through a single-photon oceanic Raman lidar.
    Shangguan M; Liao Z; Guo Y; Lee Z
    Opt Express; 2023 Jul; 31(16):25398-25414. PubMed ID: 37710428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Improved Quadrilateral Fitting Algorithm for the Water Column Contribution in Airborne Bathymetric Lidar Waveforms.
    Ding K; Li Q; Zhu J; Wang C; Guan M; Chen Z; Yang C; Cui Y; Liao J
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of satellite-retrieved oceanic inherent optical properties: proposed two-color elastic backscatter lidar and retrieval theory.
    Hoge FE
    Appl Opt; 2003 Dec; 42(36):7197-201. PubMed ID: 14717299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater.
    Liu Q; Liu D; Bai J; Zhang Y; Zhou Y; Xu P; Liu Z; Chen S; Che H; Wu L; Shen Y; Liu C
    Opt Express; 2018 Nov; 26(23):30278-30291. PubMed ID: 30469903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Assessment of Waveform Processing for a Single-Beam Bathymetric LiDAR System (SBLS-1).
    Chen Y; Le Y; Wu L; Li S; Wang L
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrieval of Suspended Sediment Concentration from Bathymetric Bias of Airborne LiDAR.
    Zhao X; Gao J; Xia H; Zhou F
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-day profiling of a beam attenuation coefficient using a single-photon underwater lidar with a large dynamic measurement range.
    Shangguan M; Yang Z; Lin Z; Weng Z; Sun J
    Opt Lett; 2024 Feb; 49(3):626-629. PubMed ID: 38300075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of multichannel signal deconvolution algorithms in airborne LiDAR bathymetry based on wavelet transform.
    Song Y; Li H; Zhai G; He Y; Bian S; Zhou W
    Sci Rep; 2021 Aug; 11(1):16988. PubMed ID: 34417543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Island feature classification for single-wavelength airborne lidar bathymetry based on full-waveform parameters.
    Ji X; Tang Q; Xu W; Li J
    Appl Opt; 2021 Apr; 60(11):3055-3061. PubMed ID: 33983200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a New Lightweight UAV-Borne Topo-Bathymetric LiDAR for Shallow Water Bathymetry and Object Detection.
    Wang D; Xing S; He Y; Yu J; Xu Q; Li P
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: design and measurements in the Western Pacific.
    Liu Q; Wu S; Liu B; Liu J; Zhang K; Dai G; Tang J; Chen G
    Opt Express; 2022 Mar; 30(6):8927-8948. PubMed ID: 35299334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretation of airborne oceanic lidar: effects of multiple scattering.
    Gordon HR
    Appl Opt; 1982 Aug; 21(16):2996-3001. PubMed ID: 20396163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar.
    Yuan D; Mao Z; Chen P; He Y; Pan D
    Opt Express; 2022 Aug; 30(16):29564-29583. PubMed ID: 36299129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airborne lidar detection of subsurface oceanic scattering layers.
    Hoge FE; Wright CW; Krabill WB; Buntzen RR; Gilbert GD; Swift RN; Yungel JK; Berry RE
    Appl Opt; 1988 Oct; 27(19):3969-77. PubMed ID: 20539503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative retrieval method for ocean attenuation profiles measured by airborne lidar.
    Liu H; Chen P; Mao Z; Pan D
    Appl Opt; 2020 Apr; 59(10):C42-C51. PubMed ID: 32400564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and Radiometric Calibration for Backscatter Intensity of Hyperspectral LiDAR Caused by Incident Angle Effect.
    Tian W; Tang L; Chen Y; Li Z; Zhu J; Jiang C; Hu P; He W; Wu H; Pan M; Lu J; Hyyppä J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.