These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36299045)

  • 1. Visible, near-infrared dual-polarization lidar based on polarization cameras: system design, evaluation and atmospheric measurements.
    Kong Z; Yu J; Gong Z; Hua D; Mei L
    Opt Express; 2022 Aug; 30(16):28514-28533. PubMed ID: 36299045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an all-day portable polarization lidar system based on the division-of-focal-plane scheme for atmospheric polarization measurements.
    Kong Z; Ma T; Zheng K; Cheng Y; Gong Z; Hua D; Mei L
    Opt Express; 2021 Nov; 29(23):38512-38526. PubMed ID: 34808903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols.
    Kong Z; Ma T; Chen K; Gong Z; Mei L
    Appl Opt; 2019 Nov; 58(31):8612-8621. PubMed ID: 31873345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements.
    Qi S; Huang Z; Ma X; Huang J; Zhou T; Zhang S; Dong Q; Bi J; Shi J
    Opt Express; 2021 Jul; 29(15):23461-23476. PubMed ID: 34614611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated depolarization ratios for dust and smoke at laser wavelengths: implications for lidar application.
    Huang Z; Shen X; Tang S; Zhou T; Dong Q; Zhang S; Li M; Wang Y
    Opt Express; 2023 Mar; 31(6):10541-10553. PubMed ID: 37157599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of aerosol absorption with dual-polarization lidar observations.
    Huang Z; Qi S; Zhou T; Dong Q; Ma X; Zhang S; Bi J; Shi J
    Opt Express; 2020 Mar; 28(5):7028-7035. PubMed ID: 32225938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small lidar ratio of dust aerosol observed by Raman-polarization lidar near desert sources.
    Huang Z; Li M; Bi J; Shen X; Zhang S; Liu Q
    Opt Express; 2023 May; 31(10):16909-16919. PubMed ID: 37157759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies.
    Mei L; Kong Z; Guan P
    Opt Express; 2018 Mar; 26(6):A260-A274. PubMed ID: 29609357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an atmospheric polarization Scheimpflug lidar system based on a time-division multiplexing scheme.
    Mei L; Guan P
    Opt Lett; 2017 Sep; 42(18):3562-3565. PubMed ID: 28914902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection.
    Sun G; Qin L; Hou Z; Jing X; He F; Tan F; Zhang S
    Opt Express; 2018 Mar; 26(6):7423-7436. PubMed ID: 29609297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling.
    Wang Z; Mao J; Li J; Zhao H; Zhou C; Sheng H
    Appl Opt; 2017 Jul; 56(20):5620-5629. PubMed ID: 29047703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backscattering measurements of atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species.
    Ben-David A
    Appl Opt; 1999 Apr; 38(12):2616-24. PubMed ID: 18319835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Dual-wavelength Mie lidar observations of tropospheric aerosols].
    Chi RL; Wu DC; Liu B; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1468-72. PubMed ID: 19810510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPEX airborne spectropolarimeter calibration and performance.
    Smit JM; Rietjens JHH; van Harten G; Di Noia A; Laauwen W; Rheingans BE; Diner DJ; Cairns B; Wasilewski A; Knobelspiesse KD; Ferrare R; Hasekamp OP
    Appl Opt; 2019 Jul; 58(21):5695-5719. PubMed ID: 31503878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison studies of the Scheimpflug lidar technique and the pulsed lidar technique for atmospheric aerosol sensing.
    Mei L; Ma T; Kong Z; Gong Z; Li H
    Appl Opt; 2019 Nov; 58(32):8981-8992. PubMed ID: 31873680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the influence of aerosols and albedo on sky polarization.
    Kreuter A; Emde C; Blumthaler M
    Atmos Res; 2010 Nov; 98(2-4):363-367. PubMed ID: 24068851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement.
    Wu S; Song X; Liu B; Dai G; Liu J; Zhang K; Qin S; Hua D; Gao F; Liu L
    Opt Express; 2015 Dec; 23(26):33870-92. PubMed ID: 26832047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric Pollution Monitoring in Urban Area by Employing a 450-nm Lidar System.
    Kong Z; Liu Z; Zhang L; Guan P; Li L; Mei L
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Lidar observations of atmospheric aerosol optical properties over Yinchuan area].
    Mao JD; Hua DX; He TY; Wang M
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):2006-10. PubMed ID: 20828020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting aerosol backscattering coefficient across the whole troposphere by the sidescattering lidar system with three CCD cameras.
    Ma X; Wang Z; Zhang H; Shan H; Han J; Zhao S; Wang S; Liu D; Wang Y; Tao Z
    Opt Express; 2022 Aug; 30(17):29969-29978. PubMed ID: 36242109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.