These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36299150)

  • 1. Direct detection of polystyrene equivalent nanoparticles with diameter of 21 nm (∼λ/19) using coherent Fourier scatterometry: erratum.
    Kolenov D; Zadeh IE; Horsten RC; Pereira SF
    Opt Express; 2022 Aug; 30(16):29841-29843. PubMed ID: 36299150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct detection of polystyrene equivalent nanoparticles with a diameter of 21 nm (∼λ/19) using coherent Fourier scatterometry.
    Kolenov D; Zadeh IE; Horsten RC; Pereira SF
    Opt Express; 2021 May; 29(11):16487-16505. PubMed ID: 34154211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent Fourier scatterometry nanoparticle detection enhanced by synthetic optical holography.
    Yin H; Kolenov D; Pereira SF
    Opt Lett; 2022 Aug; 47(15):3840-3843. PubMed ID: 35913328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning techniques applied for the detection of nanoparticles on surfaces using coherent Fourier scatterometry.
    Kolenov D; Pereira SF
    Opt Express; 2020 Jun; 28(13):19163-19186. PubMed ID: 32672200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent Fourier scatterometry reveals nerve fiber crossings in the brain.
    Menzel M; Pereira SF
    Biomed Opt Express; 2020 Aug; 11(8):4735-4758. PubMed ID: 32923075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent Fourier scatterometry for detection of nanometer-sized particles on a planar substrate surface.
    Roy S; Assafrão AC; Pereira SF; Urbach HP
    Opt Express; 2014 Jun; 22(11):13250-62. PubMed ID: 24921519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental demonstration of superresolution of partially coherent light sources using parity sorting: erratum.
    Wadood SA; Liang K; Zhou Y; Yang J; Alonso MA; Qian XF; Malhotra T; Hashemi Rafsanjani SM; Jordan AN; Boyd RW; Nick Vamivakas A
    Opt Express; 2021 Oct; 29(22):35579. PubMed ID: 34808988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent Fourier scatterometry: a holistic tool for inspection of isolated particles or defects on gratings.
    Paul A; Kolenov D; Scholte T; Pereira SF
    Appl Opt; 2023 Oct; 62(29):7589-7595. PubMed ID: 37855466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convolutional neural network applied for nanoparticle classification using coherent scatterometry data.
    Kolenov D; Davidse D; Le Cam J; Pereira SF
    Appl Opt; 2020 Sep; 59(27):8426-8433. PubMed ID: 32976437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of sub-wavelength features and nano-positioning of gratings using coherent Fourier scatterometry.
    Kumar N; Petrik P; Ramanandan GK; El Gawhary O; Roy S; Pereira SF; Coene WM; Urbach HP
    Opt Express; 2014 Oct; 22(20):24678-88. PubMed ID: 25322042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin memory effect in charged single telecom quantum dots: erratum.
    Podemski P; Gawełczyk M; Wyborski P; Salamon H; Burakowski M; Musiał A; Reithmaier JP; Benyoucef M; Sęk G
    Opt Express; 2021 Oct; 29(22):36460. PubMed ID: 34809056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance reflection-type augmented reality 3D display using reflective polarizer: erratum.
    Li Q; He W; Deng H; Zhong FY; Chen Y
    Opt Express; 2021 Apr; 29(9):13519. PubMed ID: 33985084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doppler optical frequency domain reflectometry for remote fiber sensing: erratum.
    Koeppel M; Sharma A; Podschus J; Sundaramahalingam S; Joly NY; Xie S; Russell PSJ; Schmauss B
    Opt Express; 2021 Jul; 29(15):24193. PubMed ID: 34614669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. InAs/InGaAs quantum dot lasers on multi-functional metamorphic buffer layers: erratum.
    Kwoen J; Imoto T; Arakawa Y
    Opt Express; 2022 Feb; 30(5):6617. PubMed ID: 35299442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation and compression of 10-fs deep ultraviolet pulses at high repetition rate using standard optics: erratum.
    Bruder L; Wittenbecher L; Kolesnichenko PV; Zigmantas D
    Opt Express; 2022 Jun; 30(13):22817-22818. PubMed ID: 36224971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Edge-based modulation transfer function measurement method using a variable oversampling ratio: erratum.
    Masaoka K
    Opt Express; 2022 Jan; 30(1):179. PubMed ID: 35201191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shockley-Queisser analysis of the temperature-efficiency correlation of solar cells in the presence of non-radiative heat transfer: erratum.
    Zhang Z; Chen K; Fan S; Chen Z
    Opt Express; 2021 Nov; 29(24):39173. PubMed ID: 34809286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional metalens generation using bilayer all-dielectric metasurfaces: erratum.
    Chen L; Hao Y; Zhao L; Wu R; Liu Y; Wei Z; Xu N; Li Z; Liu H
    Opt Express; 2021 Jun; 29(12):18304. PubMed ID: 34154088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the full scattering matrix using coherent Fourier scatterometry.
    Kumar N; Cisotto L; Roy S; Ramanandan GK; Pereira SF; Paul Urbach H
    Appl Opt; 2016 Jun; 55(16):4408-13. PubMed ID: 27411195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical singularity assisted method for accurate parameter detection of step-shaped nanostructure in coherent Fourier scatterometry.
    Dou X; Min C; Zhang Y; Pereira SF; Yuan X
    Opt Express; 2022 Aug; 30(16):29287-29294. PubMed ID: 36299106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.