These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36299232)

  • 1. Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in
    Xia H; Yu B; Jiang Y; Cheng R; Lu X; Wu H; Zhu B
    RNA Biol; 2022 Jan; 19(1):1130-1142. PubMed ID: 36299232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts.
    Dousis A; Ravichandran K; Hobert EM; Moore MJ; Rabideau AE
    Nat Biotechnol; 2023 Apr; 41(4):560-568. PubMed ID: 36357718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mRNA produced by VSW-3 RNAP has high-level translation efficiency with low inflammatory stimulation.
    Wang G; Cheng R; Chen Q; Xu Y; Yu B; Zhu B; Yin H; Xia H
    Cell Insight; 2022 Oct; 1(5):100056. PubMed ID: 37193555
    [No Abstract]   [Full Text] [Related]  

  • 4. A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase.
    Wu H; Wei T; Yu B; Cheng R; Huang F; Lu X; Yan Y; Wang X; Liu C; Zhu B
    RNA Biol; 2021 Oct; 18(sup1):451-466. PubMed ID: 34314299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of low immunogenicity RNA with high-temperature in vitro transcription.
    Wu MZ; Asahara H; Tzertzinis G; Roy B
    RNA; 2020 Mar; 26(3):345-360. PubMed ID: 31900329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-terminus-dependent transcription by T7 RNA polymerase and its C-helix mutants.
    Yu B; Chen Y; Yan Y; Lu X; Zhu B
    Nucleic Acids Res; 2024 Aug; 52(14):8443-8453. PubMed ID: 38979568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host RNA polymerase inhibitors encoded by ϕKMV-like phages of Pseudomonas.
    Klimuk E; Akulenko N; Makarova KS; Ceyssens PJ; Volchenkov I; Lavigne R; Severinov K
    Virology; 2013 Feb; 436(1):67-74. PubMed ID: 23127595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes.
    Schaffter SW; Kengmana E; Fern J; Byrne SR; Schulman R
    ACS Synth Biol; 2024 Jul; 13(7):1964-1977. PubMed ID: 38885464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making RNA: Using T7 RNA polymerase to produce high yields of RNA from DNA templates.
    Liu T; Patel S; Pyle AM
    Methods Enzymol; 2023; 691():185-207. PubMed ID: 37914446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of bacteriophage T7 RNA polymerase by linker insertion mutagenesis.
    Gross L; Chen WJ; McAllister WT
    J Mol Biol; 1992 Nov; 228(2):488-505. PubMed ID: 1453459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of transcription inhibition by phage T7 gp2 protein.
    Mekler V; Minakhin L; Sheppard C; Wigneshweraraj S; Severinov K
    J Mol Biol; 2011 Nov; 413(5):1016-27. PubMed ID: 21963987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective Synthesis of mRNA during In Vitro Transcription with Fewer Impurities Produced.
    He W; Geng Q; Ji G; Li J; Wang D; He Y; Jin Q; Ye J
    Molecules; 2024 Oct; 29(19):. PubMed ID: 39407643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An engineered T7 RNA polymerase for efficient co-transcriptional capping with reduced dsRNA byproducts in mRNA synthesis.
    Miller M; Alvizo O; Baskerville S; Chintala A; Chng C; Dassie J; Dorigatti J; Huisman G; Jenne S; Kadam S; Leatherbury N; Lutz S; Mayo M; Mukherjee A; Sero A; Sundseth S; Penfield J; Riggins J; Zhang X
    Faraday Discuss; 2024 Sep; 252(0):431-449. PubMed ID: 38832894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of transcription inhibition by the DNA mimic protein Ocr of bacteriophage T7.
    Ye F; Kotta-Loizou I; Jovanovic M; Liu X; Dryden DT; Buck M; Zhang X
    Elife; 2020 Feb; 9():. PubMed ID: 32039758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Visualization of elongation complexes for t7 Rna polymerase by atomic force microscopy].
    Limanskaia OIu; Limanskiĭ AP
    Mol Biol (Mosk); 2008; 42(3):533-42. PubMed ID: 18702313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination.
    Sousa R; Patra D; Lafer EM
    J Mol Biol; 1992 Mar; 224(2):319-34. PubMed ID: 1560455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The histone-like protein HU does not obstruct movement of T7 RNA polymerase in Escherichia coli cells but stimulates its activity.
    Morales P; Rouviere-Yaniv J; Dreyfus M
    J Bacteriol; 2002 Mar; 184(6):1565-70. PubMed ID: 11872707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised.
    Shadrin A; Sheppard C; Severinov K; Matthews S; Wigneshweraraj S
    Microbiology (Reading); 2012 Nov; 158(Pt 11):2753-2764. PubMed ID: 22977089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensatory evolution in response to a novel RNA polymerase: orthologous replacement of a central network gene.
    Bull JJ; Springman R; Molineux IJ
    Mol Biol Evol; 2007 Apr; 24(4):900-8. PubMed ID: 17220516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching promotor recognition of phage RNA polymerase in silico along lab-directed evolution path.
    E C; Dai L; Yu J
    Biophys J; 2022 Feb; 121(4):582-595. PubMed ID: 35031277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.