These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36299529)

  • 1. A phase transition for finding needles in nonlinear haystacks with LASSO artificial neural networks.
    Ma X; Sardy S; Hengartner N; Bobenko N; Lin YT
    Stat Comput; 2022; 32(6):99. PubMed ID: 36299529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators.
    Antonacci Y; Minati L; Faes L; Pernice R; Nollo G; Toppi J; Pietrabissa A; Astolfi L
    PeerJ Comput Sci; 2021; 7():e429. PubMed ID: 34084917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An artificial neural network to model response of a radiotherapy beam monitoring system.
    Cho YB; Farrokhkish M; Norrlinger B; Heaton R; Jaffray D; Islam M
    Med Phys; 2020 Apr; 47(4):1983-1994. PubMed ID: 31955428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finding Distributed Needles in Neural Haystacks.
    Cox CR; Rogers TT
    J Neurosci; 2021 Feb; 41(5):1019-1032. PubMed ID: 33334868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.
    Paz-Linares D; Vega-Hernández M; Rojas-López PA; Valdés-Hernández PA; Martínez-Montes E; Valdés-Sosa PA
    Front Neurosci; 2017; 11():635. PubMed ID: 29200994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
    Cai B; Jiang X
    J Biomed Inform; 2014 Apr; 48():114-21. PubMed ID: 24361387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks.
    Shadpour S; Chud TCS; Hailemariam D; Oliveira HR; Plastow G; Stothard P; Lassen J; Baldwin R; Miglior F; Baes CF; Tulpan D; Schenkel FS
    J Dairy Sci; 2022 Oct; 105(10):8257-8271. PubMed ID: 36055837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformed ℓ
    Ma R; Miao J; Niu L; Zhang P
    Neural Netw; 2019 Nov; 119():286-298. PubMed ID: 31499353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear Feature Selection Neural Network via Structured Sparse Regularization.
    Wang R; Bian J; Nie F; Li X
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9493-9505. PubMed ID: 36395136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning Sparse Deep Neural Networks with a Spike-and-Slab Prior.
    Sun Y; Song Q; Liang F
    Stat Probab Lett; 2022 Jan; 180():. PubMed ID: 34744226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.
    Oparaji U; Sheu RJ; Bankhead M; Austin J; Patelli E
    Neural Netw; 2017 Dec; 96():80-90. PubMed ID: 28987979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Treatment of Optimization Problems With L1 Penalty Terms via Multiobjective Continuation.
    Bieker K; Gebken B; Peitz S
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7797-7808. PubMed ID: 34559634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. lp-lq penalty for sparse linear and sparse multiple kernel multitask learning.
    Rakotomamonjy A; Flamary R; Gasso G; Canu S
    IEEE Trans Neural Netw; 2011 Aug; 22(8):1307-20. PubMed ID: 21813358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LassoNet: Neural Networks with Feature Sparsity.
    Lemhadri I; Ruan F; Tibshirani R
    Proc Mach Learn Res; 2021 Apr; 130():10-18. PubMed ID: 36092461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning and deep learning methods that use omics data for metastasis prediction.
    Albaradei S; Thafar M; Alsaedi A; Van Neste C; Gojobori T; Essack M; Gao X
    Comput Struct Biotechnol J; 2021; 19():5008-5018. PubMed ID: 34589181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning mixed graphical models with separate sparsity parameters and stability-based model selection.
    Sedgewick AJ; Shi I; Donovan RM; Benos PV
    BMC Bioinformatics; 2016 Jun; 17 Suppl 5(Suppl 5):175. PubMed ID: 27294886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible variable selection for recovering sparsity in nonadditive nonparametric models.
    Fang Z; Kim I; Schaumont P
    Biometrics; 2016 Dec; 72(4):1155-1163. PubMed ID: 27077330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.