These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36299716)

  • 21. Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone.
    Li C; Wu J; Zhang D; Wang P; Zhu L; Gao Y; Wang W
    Water Res; 2023 Apr; 232():119708. PubMed ID: 36764103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of inhibition effect on microbiologically influenced corrosion of Ti-5Cu alloy against marine Bacillus vietnamensis biofilm.
    Arroussi M; Zhao J; Bai C; Zhang S; Xia Z; Jia Q; Yang K; Yang R
    Bioelectrochemistry; 2023 Feb; 149():108265. PubMed ID: 36423527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitigation of microbial corrosion by Cu addition to X65 pipeline steel by Pseudomonas aeruginosa MCCC 1A00099.
    Li Y; Shi X; Li J; Zeng Y; Shen M; Yan W; Yang K
    Arch Microbiol; 2022 May; 204(6):299. PubMed ID: 35513559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of microbiologically influenced corrosion of 304 stainless steel by aerobic thermoacidophilic archaeon Metallosphaera cuprina.
    Qian H; Liu S; Wang P; Huang Y; Lou Y; Huang L; Jiang C; Zhang D
    Bioelectrochemistry; 2020 Dec; 136():107635. PubMed ID: 32866835
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acceleration mechanism of riboflavin on Fe
    Lu S; Zhu H; Xue N; Chen S; Liu G; Dou W
    Sci Total Environ; 2024 Aug; 939():173613. PubMed ID: 38815822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudomonas aeruginosa-accelerated corrosion of Mo-bearing low-alloy steel through molybdenum-mediating chemotaxis and motility.
    Guo Z; Chai Z; Liu T; Gao S; Hui X; Zhang C; Guo N; Dong L
    Bioelectrochemistry; 2022 Apr; 144():108047. PubMed ID: 35007894
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corrosion of Pseudomonas aeruginosa toward a Cu-Zn-Ni alloy inhibited by the simulative tidal region.
    Li C; Wu J; Wang P; Zhang D; Zhu L; Gao Y; Wang W
    Environ Sci Pollut Res Int; 2024 Jan; 31(3):3628-3640. PubMed ID: 38085474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy.
    Nair RB; Arora HS; Mukherjee S; Singh S; Singh H; Grewal HS
    Ultrason Sonochem; 2018 Mar; 41():252-260. PubMed ID: 29137749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic Corrosion of 304 Stainless Steel Caused by the
    Jia R; Yang D; Xu D; Gu T
    Front Microbiol; 2017; 8():2335. PubMed ID: 29230206
    [No Abstract]   [Full Text] [Related]  

  • 30. The combined effect of carbon starvation and exogenous riboflavin accelerated the Pseudomonas aeruginosa-induced nickel corrosion.
    Pu Y; Hou S; Chen S; Hou Y; Feng F; Guo Z; Zhu C
    Bioelectrochemistry; 2024 Jun; 157():108679. PubMed ID: 38471411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbiological corrosion acceleration of N80 steel in shale gas field produced water containing Citrobacter amalonaticus at 60 °C.
    Liu H; Jin Z; Liu H; Meng G; Liu H
    Bioelectrochemistry; 2022 Dec; 148():108253. PubMed ID: 36049421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of
    Tang J; Guo R; Zhang X; Zhao X
    Heliyon; 2022 Dec; 8(12):e12588. PubMed ID: 36643323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Food-grade D-limonene enhanced a green biocide in the mitigation of carbon steel biocorrosion by a mixed-culture biofilm consortium.
    Unsal T; Wang D; Kijkla P; Kumseranee S; Punpruk S; Mohamed ME; Saleh MA; Gu T
    Bioprocess Biosyst Eng; 2022 Apr; 45(4):669-678. PubMed ID: 34997847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of a biofilm-forming bacterium Tenacibaculum mesophilum D-6 on the passive film of stainless steel in the marine environment.
    Dong Y; Feng D; Song GL; Su P; Zheng D
    Sci Total Environ; 2022 Apr; 815():152909. PubMed ID: 34998779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of
    Shao Z; Guo R; Tang J; Zhang X
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism underlying the acceleration of pitting corrosion of B30 copper-nickel alloy by
    Li H; Sun M; Du M; Zheng Z; Ma L
    Front Microbiol; 2023; 14():1149110. PubMed ID: 37180272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of corrosion causing Pseudomonas aeruginosa using plasma-activated water.
    Asimakopoulou E; Εkonomou SΙ; Papakonstantinou P; Doran O; Stratakos AC
    J Appl Microbiol; 2022 Apr; 132(4):2781-2794. PubMed ID: 34846774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution.
    Yu S; Lou Y; Zhang D; Zhou E; Li Z; Du C; Qian H; Xu D; Gu T
    Bioelectrochemistry; 2020 Jun; 133():107477. PubMed ID: 32035394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium Macrococcus equipercicus.
    Arun D; Vimala R; Devendranath Ramkumar K
    Bioelectrochemistry; 2020 Oct; 135():107546. PubMed ID: 32413811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low efficiency of cathodic protection in marine tidal corrosion of X80 steel in the presence of Pseudomonas sp.
    Zhou X; Wang Q; Su H; Tan Z; Li C; Li Z; Wu T
    Bioelectrochemistry; 2024 Jun; 157():108656. PubMed ID: 38290303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.